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ABSTRACT: This is first work is done on application of TanDEM-X data satellite data to Malaysian coastal waters.
This aims at utilizing an optimization of Hopfield neural network to retrieve variation of sea surface current along
Malaysian coastal waters. In doing so, multi-objective evolutionary algorithm based on Pareto front is used to
minimize the error has produced due to non-linearity between TanDEM-X data and sea surface movements. This
work aimed at retrieving sea surface current from TanDEM-X data along the coastal water of Malaysia. Two
approaches have been implemented Hopfield neural network algorithm and Pareto optimal solution. The study shows
that the Pareto optimal solution has highest performance than Hopfield neural network algorithm with lowest RMSE
of £0.009. Further, Pareto optimal solution can determine the sea surface current pattern variation along coastal water
from TanDEM-X data. In conclusion, TanDEM-X data shows an excellent promises for retrieving sea surface.

1. INTRODUCTION

Synthetic aperture radar (SAR) is recognized because the potential tool for dynamic earth science studies. One of an
attention-grabbing topic is current flow that is needed short go back satellite cycle and high resolution. These will give
exactly data concerning current dynamic flow (Marghany 2000 and Krieger et al., 2003). In fact, current is very
important for ship navigation, fishing, waste matter substances transport and sediment transport. Respectively optical
and microwave sensors are enforced to monitor the current flows. Indeed, the ocean surface dynamic options of sea
surface current is vital parameters for atmospheric-sea surface interactions. In this regard, the global climate change,
marine pollution and coastal risky are preponderantly dominated by current speed and direction (Alejandro and
Saadon 1996; Alejandro and Demmler 1997; Inglada and Garello 2002 ). The measurements of ocean current from
space relies on the electromagnetic signal. Truly, associate degree of an electromagnetic signal of optical and
microwave reflects from the ocean carrying records concerning one among the first discernible quantities that are the
colour, the beamy temperature, the roughness, and also the height of the ocean (Inglada and Garello 2002 and
Romeiser et al., 2010).

The principal conception to retrieve the ocean surface current from SAR information is perform of the Doppler
frequency shift theory (Marghany 2009a). Incidentally, the orbital quality of the ocean wave and surface current
dynamic interactions will cause shifting of the radiolocation signal within the angle direction i.e. the flight direction
that is thought because the Doppler frequency shift (Cao and Wang 2003). In truth, the surface current dynamic is
virtual to the orbital movement and an antenna rotation of the synthetic aperture radar. Consequently, the Doppler
frequency shift, reckon the SAR antenna angle of view that is virtual to the orbital mechanical phenomenon rotation
(Marghany 2009 b and Marghany 2011a). Consequently, the connection between the ocean surface dynamic orbital
movement and also the SAR satellite orbital motion would be nonlinear attributable to the Doppler influence (Inglada
and Garello 2002). In literature, there are many mathematical algorithms that are supported physical models to
retrieve ocean surface current from SAR information. On alternative words, these algorithms area unit enforced to
map the Doppler frequency spectra into the important ocean surface current speed. However, these techniques are
restricted attributable to the nonlinear quality of ocean surface dynamic behaviours and radar signal (Marghany
2011a). In this regard, the Doppler rate has coarser resolution than radar cross section on the angle direction (Inglada
and Garello 2002; Marghany 2009b and Marghany 2011b).

In this paper, we have a tendency to address the question of retrieving ocean surface current pattern from TanDEM-X
data. This is often verified an exploitation of neural network technique. Hypotheses examined are: (i) Hopfield
neural network based mostly multi-objective optimisation via Pareto dominance algorithmic rule is executed to
TanDEM-X data; (ii) multi-objective optimisation via Pareto dominance is used as procedures for eliminating



inherent speckle from TanDEM-X data; and (iii); the nonlinearity of the physicist frequency shift is reduced
multi-objective optimisation via Pareto dominance.

2. DATA ACQUISITION

2.1 Satellite Data

The TanDEM-X operational consequence involves the coordinated operation of 2 satellites flying in adjacent
configuration. The alteration constraints for the formation are: (i) the orbits ascending nodes, (ii) the angle between
the perigees, (iii) the orbit eccentricities and (iv) the phasing between the satellites. The observance of ocean currents
is a vital facet of assessing climate changes. Space borne SAR along-track interferometry (ATI) has the promise to
considerably contribute to the present field. It will offer large-area, world-wide surface current measurements. The
matter of mapping relatively low velocities are often resolved by formations of SAR satellites that yield sufficiently
sensitive ATI measurements (Romeiser and Runge 2007 and Romeiser et al., 2014).

In this study, the Hopfield algorithm relies on the TanDEMX information. The TerraSAR-X and TanDEM-X
satellites transmit identical SAR instruments working at 9.65 GHz frequency (X-band). Throughout some devoted
operations, both satellites are placed associate exceedingly in a very special orbit configuration with a brief along
track baseline providing a probability for current measurements. The data utilized in this study were nonheritable in
StripMap (SM), bistatic (TS-X active / TD-X passive) mode and VV polarization.

2.2 In-situ Measurement

For the surface current knowledge acquisition, the Aquadopp® 2MHz current meter factory-made by Nortek AS
(Figurel), Scandinavian country was used. The instrumentality could be a standalone instrumentation exploitation
Doppler based mostly technology to measure surface currents at the deployment web site. The instrumentation is
intended with intrinsically memory and internal battery pack wherever it may be designed to record and store
information internally for self-deployment.

Figure 1. Auad 2Mhz curren meter deployment.
The Aquadopp® 2MHz current meter was deployed on coastal water of Teluk Kemang, Port Dickson, Malaysia on

May 6 2017. (Figure 2). Two phases of data collection were carried out: (i) at 6:15 am to 8:15 am and (ii) at 6:15 pm
to 8:15 pm. The surface current data was measured for intervals of 2 hours for both phases.

N-2°31112*

N 2°28'48"
E101°43'48" E101°46'12" E101°48'36"

N2°27'36"

Figure 2. Geographical location of in situ measurements Ve .

3 HOPFIELD ALGORITHM

Marghany (2015b) have implemented Hopfield neural networks for RADARSAT-2 SAR data to retrieve sea surface
current. This section has been retrieved from Marghany (2015b) work. Therefore, Hopfield neural networks is used
with TanDEM-X data. Consistent with Coté and Tatnall (1997), Hopfield neural networks is considered as a
promising method for determining a minimum of energy of function. For instance, motion analysis and object pattern



recognitions might be coded into an energy function (Marghany 2004). Furthermore, the actual physical constraint,
heuristics, or prior knowledge of sea surface features, nonlinearity and the Doppler frequency shift (Marghany 2009a)
can be coded into the energy function.

A pattern, in the context of the N node Hopfield neural network is an N-dimensional vectors V = (v, V,,....... v,)

and U = (u,,u,,....... u,) from space S ={-11}" . A special subset of S is set of exemplar

E={e" :1<k <K}, .where e’ =(e"1,e",,....... ,e*,)and k is exemplar pattern where 1<k <K . The

Hopfield net associates a vector from S with an exemplar pattern in E.

Following Marghany (2009b), Hopfield net is involved that w;, = w ;and w; = 0. Succeeding, Cao and Wang,

(2003), the propagation rule 7, which defines how neuron sates and weight combined as input to a neuron can be

described by
N
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The Hopfield algorithm has consisted of (i) assign weights to synaptic connections; (ii) initialize the net with
unknown pattern; and (iii) iterate until convergence and continue features tracking (Cote and Tatnall, 1997). First

step of assign weight w; to synaptic connection can be achieved as understands:
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Hopfield neural network could be identified current pattern features by mathematical comparing to each other in order
to build an energy function (Liang and Wang, 2000 and Arik 2002). According to Co6té and Tatnall (1997) the

difference function to determine the discriminations between different features f,, f ; by a given formula:
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where, L" is curvature shape of current feature, disij is the distance between sea surface current features fl and f .

and G and H and J are constants, and @is an angle of orientation of local curve element. In addition, dist" and

0" are the minimum acceptable distance and the maximum acceptable rotation angle, respectively before energy
function.

4. MULTI-OBJECTIVE OPTIMIZATION

Following Atashkari et al., (2004), the Multi-objective optimization (MOB) which is also termed the multi-criteria
optimization or vector optimization. In this regard, it has been defined as finding a vector of decision variables
satisfying constraints to give acceptable values to all objective functions. Generally, it can be mathematically defined

. * K * |7 .
as: find the vector S = Sl ,52,...,Sn to optimize

F($) = £ £ )| @
subject to m inequality constraints
g($<0 , i=ltom - ®)
and p equality constraints
h;j($)=0 . j=1top, (6)

ES
where §° € R" is the vector of decision or design variables, and F(S)€ R* is the vector of objective functions

which each of them be either minimized or maximized. However, without loss of generality, it is assumed that all
objective functions are to be minimized.



A point § e ( Q is a feasible region in R” satisfying equations (4) and (6) is said to be Pareto optimal
(minimal) with respect to the all S € Q if and only if F(S") < F(S). Alternatively, it can be readily restated as
Vie{l2,..k}.VSe Q—{8"} f(S)<f(S) A Tjel{l2 .k} f,(SH<[,(S).

*
On other words, the solution S is said to be Pareto optimal (minimal) of ocean current pattern if no other solution

*
can be found to dominate S using the definition of Pareto dominance. For a given MOP, the Pareto front PT* is a set
of vector of objective functions which are obtained using the vectors of decision variables in the Pareto set P*, that is

PE*={F(S)=(f,(5),1,(S),..... [, (5)):S € P*}. In other words, the Pareto front PF* is a set of the vectors of
objective functions mapped from P* (Atashkari et al., 2004).

5. RESULTS AND DISCUSSION

The TanDEM-X data with X-band of the spotlight product which derived from the strip-map mode has utilized in this
study. The Figure 3 indicates the results that are retrieved from Hopfield rule and Pareto rule. It is attention-grabbing
realize that Pareto algorithmic rule has find the most effective solution for sea surface current pattern as compared to
Hopfield neural network (Figure 3b).The morphology of ocean surface current structures are well known exploitation
Pareto algorithmic rule. Indeed, random generation of 1000 iterations at intervals 3 min are needed to realize the
performance of Pareto algorithmic program. Clearly, Pareto algorithm delivered spatial variation of surface current
from onshore to offshore. Onshore surface current is dominated by maximum value of 0.12 m/s while the offshore
surface currents have maximum value of 0.5 m/s.
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Figure 3. Ocean current pattern simulated from (a) Hopfield neural network result (b) Pareto optimal
solution.

On the word of Mittermayer and Runge (2003), the velocity component of moving objects may be measured with
ATI. The sensitivity of the instrument principally depends on the measuring device carrier frequency and
consequently the effective time lag between the two measurements administered with two antennas and receiver
chains. These parameters have to be compelled to be tailored to the speed range of the objects of interest. High speed
objects like cars would like solely a really short time lag and also the two antennas acquired to be separated some
meters.

Table 1 delivers the accuracy of this study. Clearly, the Pareto optimal solution has an excellent performance than
Hopfield algorithm, with lowest P value of 0.00006 and RMSE of +0.009 and highest 1> of 0.86. Consistent with
Marghany (2015b) and Marghany and Mansor (2016), the Hopfield neural network is anticipated as optimization tool
to reduce the impact of the Doppler nonlinearity in the SAR data. Subsequently, multi-objective optimization is fairly
deliberated as attaining a vector of verdict variables satisfying constraints to offer precise to all objective functions.
This confirms study of Marghany and Mansor (2016).



Table 1. Statistical regression of current meter sea surface current and retrieved one by Hopfield neural
network based Pareto optimal solution.

Methods R? RMSE (m/s) P

Hopfield neural | 0.78 +0.2 0.0006
network- Current meter

Pareto optimal | 0.86 +0.009 0.000086
solution-Current meter

Moreover, the multi-objective optimisation via Pareto dominance obtains a particular curve that diminishes the
inconsistency between the certain ocean surface current from TanDEMX data and in situ measurements. In this
understanding, the new approach supported TanDEMX data and as a result the multi-objective optimisation via
Pareto Dominance, know how to minimalize the number of the residual faults for retrieving ocean surface current
from TanDEMX data and delivers precise ocean surface current pattern spatial variation. This work recommends the
work done by Atashkari et al., (2014) and Marghany (2015b). Additionally, it is recommended to utilize the time
series of TanDEMX data for monitoring coastal current daily and seasonal variations.

6. CONCLUSIONS

This work geared toward retrieving ocean surface current from TanDEMX data along the coastal water of Port
Dickson, Malaysia. Two approaches are prescribed: (i) Hopfield neural network rule; and (ii) Pareto optimum
resolution. The study shows that the Pareto optimum resolution has highest performance than Hopfield neural
network rule with lowest RMSE of +0.009. Further, Pareto optimum resolution can verify the ocean surface current
pattern variation on coastal water from TanDEMX data. Last, TanDEMX data reveals a superb guarantees for
retrieving ocean surface current with X-band.
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