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ABSTRACT:  With the availability of large spatio-temporal Earth Observation satellite data and geospatial layers 

with concomitant increase in geo-computation requirement, the popularity of cloud based platform for accessing, 

sharing and processing large volume data is growing day by day among the geospatial community. Google's Earth 

Engine is one such platform, which provides access to satellite and other geospatial datasets and analysis 

functionalities to researchers free of cost, for various applications from local to global-scale. This study aims at 

exploring Google's Earth Engine to study the spatio-temporal dynamics of surface water during the Indian Summer 

Monsoon season over the last three decades. Top of Atmosphere (TOA) reflectance images available from Landsat-

5, 7 and 8 (1984 to 2016.) and Aqua MODIS (2002 to 2016) are used in this process. A part of Ghaghara river basin 

covering about 8400 km2 area is selected as the study site. The clouds and their shadows are masked using “Fmask” 

and “StateQA” quality bands available along with TOA reflectance images for Landsat and MODIS, respectively. 

Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI) are calculated 

and by applying suitable thresholds and combining them, binary surface water images for each date of acquisition 

are generated. By combining the binary surface water images over the entire study period, a composite long-term 

surface water map is generated wherein each pixel represents the frequency of the presence of surface water for 

cloud-free observations. The output is compared with the geomorphology map. Such composite long-term surface 

water map is extremely useful not only for understanding the spatio-temporal dynamics of surface water but also 

for other applications e.g., flood hazard zonation and developmental planning, etc. The study demonstrates the 

potential of cloud based online geo-processing platform in analyzing the time-series data from multiple satellites 

without any cost implication towards data procurement and processing; the scalability for large-area application 

may be explored further.  

 

1. INTRODUCTION 

 

Surface water bodies are fundamental water stockpiling units and play an essential role in effective tapping of large 

amounts of water from precipitation and overflow occasions. Surface water spread being dynamic natural process, 

varies from months, seasons to years. To understand it fully, there is a need to look for large datasets with long 

temporal coverage. With the advent of satellite imaging, long-term storage of data in digital form and availability in 

public domain, many strategies have emerged to delineate surface water spread from satellite pictures utilizing both 

optical and microwave sensors. 

 

Several papers have reported utilization of multi-transient satellite pictures for portraying the water spread territory. 

Lenher et al., 2004 have made National Global lakes and wetlands database at various levels viz., substantial lakes, 

supplies, littler water bodies, and wetlands. Li et al., 2005 have published the maps of Canada’s wetlands utilizing 

optical, radar and DEM information. Subramaniam et al., 2011 have created an automated algorithm to extract 

water bodies, for the depiction of surface water bodies utilizing Indian Remote Sensing (IRS) satellite 

Resourcesat’s AWiFS and LISS III sensors, and executed on national datasets.  

 

Google Earth Engine (GEE) is a cloud-based geo-processing platform, where large datasets of satellite images can 

be processed at once and countless analysis can be made. A global effort on analyzing Landsat data has been made 

by Pekel et al., 2016 and the results are available on their portal (EU-JRC, 2017). These outputs can be utilized for 

disaster management, water resource management, biodiversity characterization and various other thematic 

applications.  

 



In this study, temporal data from Landsat and MODIS satellites have been used on GEE to study the spatio-

temporal dynamics of surface water spread during the Indian Summer Monsoon season over last three decades, 

from 1984 to 2016. The results are further analyzed with reference to geomorphology of the study area.  

 

2. MATERIALS AND METHODS 

 

2. 1 Study area 

 

A part of Ghaghara river basin in the Uttar Pradesh State of India, covering about 8400 km2 area, is taken up for 

this study (Fig. 1). The area lies between 81.24oE to 82.35oE and 26.75oN to 27.48oN. With an average population 

density of about 800 persons per km², Uttar Pradesh is the State with largest population. As the area is fertile, there 

is a pressure on land availability. Several important government and private installations such as, offices, hospitals, 

schools, colleges and housing units have cropped up in the flood plains. During the Indian summer monsoon, the 

multiple rivers in the area tend to overflow its banks and change their course. Due to meandering of rivers and 

multiple river confluences, there is an urgent requirement to do a flood hazard zonation of this area.  

 

 
Figure 1: Study area is part of the Ghaghara river basin in the State of Uttar Pradesh, India. The selected area lies in 

six districts. Shown here is the Landsat 8 enhanced natural color composite, acquired on June 4, 2017. 

 

2.2 Landsat data 

 

Landsat has longest archive of continuous moderate resolution remote sensing data of land. Due to availability of 

such a vast data, researchers from many fields like geology, agriculture, water resources, soils, forestry, disaster 

management, etc. are using these data for various applications. With time newer applications using these datasets 

are being implemented for the betterment of society.  

 

For this study, satellite imagery of Landsat 5, 7 and 8 are utilized for the time duration of 33 years from 1984 to 

2016 (Table 1). Only four months (June to September) data are taken up corresponding to the Indian summer 

monsoon season in which 90% of the annual cumulative rainfall takes place. “Top of Atmosphere (TOA) 

Reflectance” images of only three bands i.e., green (0.52~0.60), red (0.63~0.69) and near infrared (0.76~0.90), are 

utilized as a part of the present study. 

  

Optical remote sensing data have limitations during monsoon months due to presence of clouds. To counter this 

problem, the “Fmask” band developed by Zhu et al., 2012 and Zhu et al., 2015 along with Landsat TOA reflectance 



dataset is used. This “Fmask” band can identify pixels which correspond to clear sky (0), water (1), shadow (2), 

snow (3) and cloud (4).  

 

Table 1: Details of Landsat data used 

Dataset Spatial Resolution Temporal Granularity Temporal Coverage Spatial Coverage 

Landsat 8 OLI/TIRS 30m 16 day 2013-now Global 

Landsat 7 ETM + 30m 16 day 2000-Now Global 

Landsat 5 TM 30m 16 day 1984-2012 Global 

 

2.3 MODIS data 

 

MODIS (Moderate Resolution Imaging Spectroradiometer) is one of the instruments on-boad Terra (EOS AM-1) 

and Aqua (EOS PM-1) satellites. Terra and Aqua MODIS together cover the whole Earth within 1 to 2 days and 

acquire data in 36 different spectral bands. Data received from MODIS are used for understanding numerous 

processes of land, ocean and atmosphere, environment monitoring and studying global change.      

 

As MODIS data are present for a relatively shorter duration of time, the temporal range used in the study is from 

2002 to 2016. The surface reflectance data from Aqua satellite is used which has a temporal resolution of 8 days, 

spatial resolution of 500 m and is the level-3 processed product (namely, MYD09A1). The MODIS bands 

(sur_refl_b01, sur_refl_b02 and sur_refl_b04) used in this study are similar to that of Landsat bands. The Fmask 

band available in Landsat is replaced by the “StateQA” band in MODIS data, which contains the information about 

the cloud presence. 

 

2.4 Geomorphology map 

 

The geomorphology map prepared on 1:50,000 scale under the National Geomorphological and Lineament 

Mapping (NGLM) project, jointly carried out by Indian Space Research Organisation (ISRO) and Geological 

Survey of India, is also used in this study (Fig. 2) apart from satellite data. The geomorphology map is prepared 

using IRS LISS-III images of 2005-06 and other ancillary/ field information. The area is covered under three major 

geomorphic units i.e., active flood plain, older flood plain and older alluvial plain.  

 

 
Figure 2: Geomorphogy map of the study area (Source: National Geomorphological and Lineament Mapping, 

NGLM, project of ISRO and GSI) 

 

 

 



2.5 Google Earth Engine (GEE) 

 

Google Earth Engine (GEE) is a cloud-based platform for Earth Observation data analysis that combines vast 

collection of publically available aerial and satellite data with a large-scale computational facility optimized for 

parallel processing of geospatial data. GEE has an archive of historical Earth imagery (going back more than forty 

years), temporal data series of continuing satellite series (such as Landsat, MODIS, etc.) and newer satellite data 

collections (such as Sentinel, VIIRS, etc.). GEE supports geospatial analyses such as, image processing, 

classification, change detection and vector-based extraction of image statistics. To enable the analysis of large 

datasets, GEE also provides APIs in JavaScript and Python programming languages, as well as other tools. It 

provides a library of built-in functions which may be applied to this geospatial data collection for display and 

analysis. Through the API, users can create their own algorithms by recombining existing algorithms.  

 

In this study, GEE is used to process time-series satellite data (Landsat and MODIS) for the last three decades 

(1984 to 2016).  

 

2.6 Methods and process 

 

This section discusses various methods employed in the collection of large amount of data and processing them in 

GEE and desktop GIS software (Fig. 3). 

 

2.6.1 Data pre-processing 

 

The GEE platform has over 170 different collections ranging from aerial, satellite to modelled data products for 

different time periods and the associated metadata. It allows spatial, temporal and metadata based filtering of these 

collections for further use in analysis. The Landsat and MODIS data required for the study are filtered for the area 

around Ghaghara basin, for the monsoon period of 1984-2016 (for Landsat) and 2002-2016 (for MODIS). This is 

done using the built-in geometry based filtering in the spatial domain “filterBounds,” and the metadata based 

filtering function in the time domain “filterDate.”  Landsat data for 33 years and MODIS data for 15 years are 

assembled in the form of an “ImageCollection” to perform time-series analysis. 

 

 

 
 

Figure 3: Generalized structure of methodology followed. The orange boxes represent data pre-processing 

steps performed in GEE, the green boxes represent the powerful “map” and “reduceRegion” functions in 

GEE which allows pixel-wise parallel time-series analysis to be performed, and the black box represents 

operations performed on desktop GIS software 

 

2.6.2 Time-series analysis 

 

Landsat bands B2, B3, B4, Fmask and MODIS bands sur_refl_b01, sur_refl_b02, sur_refl_b04, StateQA are used 

to create Normalized Difference Water Index (NDWI). McFeeters (1996, 2013) equations are used to derive 

NDWI. A pre-defined function is available in GEE to find the normalized difference, “normalizedDifference 

([‘Green band’, ‘NIR band’])” to make this calculation. The power of the cloud platform is utilized here by making 



the calculations in parallel for each pixel, thereby reducing the time required to perform the task. Landsat and 

MODIS data are also used to create Normalized Difference Vegetation Index (NDVI) images using 

“normalizedDifference ([‘NIR band’, ‘Red band’])” function. 

 

To generate non-vegetated surface water binary images, thresholding of the two indices (NDWI and NDVI) is 

performed. Cloud information is also taken into consideration in this step. The Fmask (for Landsat) and StateQA 

(for MODIS) bands are used to ignore cloudy pixels. All the values above zero are changed to 1 and below zero to 

0 in case of the NDWI; while in case of NDVI all the values less than zero are changed to 1 and values above zero 

are changed to 0. This binarization helps in capturing non-vegetated surface water. This operation is performed in 

parallel on Google’s massive array of servers, using the “map” function to loop overall images in an image 

collection. 

 

After applying the threshold to all the images in both the collections, each collection is individually summed. These 

are termed as “surface water aggregated image.” The Fmask and StateQA datasets are separately binarized and 

summed to generate “cloud free aggregated image,” The ratio of the surface water aggregated image and the cloud 

free aggregated image is calculated and termed as “normalized frequency of water occurrence image.” These 

products are exported from GEE to local computer.  

 

2.6.3 Analysis of surface water maps 

 

The surface water aggregated image maps and normalized frequency of water occurrence image maps obtained 

from Landsat and MODIS are compared with the geomorphology map. Zonal statistics of surface water occurrence 

with reference to different frequency classes geomorphic units are extracted and analyzed.  

 

3. RESULTS AND DISCUSSION 

 

3.1 Surface water aggregated images  

 

The surface water aggregated images show the number of days in which water is detected on each pixel i.e., a pixel 

value of 10 means that on 10 images water is detected on cloud-free days. The number of images from which this 

number is derived varies from pixel to pixel, as some areas may not have been imaged or may not be available in 

the GEE Landsat/MODIS archive. Figure 4a represents areas with presence of water in shades of blue as derived 

from Landsat data; white background means that water is not present on any of the days of satellite data used in the 

study. Nearly 90% of the pixels have 0 values (Table 2), hence the majority portion of the map remains free from 

occurrence of water and appears white (Fig. 4a). Nearly 10% of the remaining pixels show areas where the water is 

present in <60 days. The MODIS data show that about 91% of the area remains free from the occurrence of water, 

while remaining area has water on different number of days (Table 2, Fig. 4b). The difference in the maximum 

aggregated values on Landsat and MODIS data may be explained due to difference in the length of studied time 

period and spatial resolution. As MODIS has a coarser resolution, sub-pixel occurrence of water may lead to a 

given pixel getting classified as non-water or water pixel depending on the proportion of water in that pixel. 

Importantly, despite differences in the spatial resolutions in Landsat and MODIS, the overall pattern of surface 

water occurrence in Landsat and MODIS data is similar. However, owing to better spatial resolution, the Landsat 

data derived surface water map is smooth and also depict finer details.   

 
Figure 4: Surface water detection (in number of days) from (a) Landsat data during monsoon period of 1984 - 2016, 

and (b) MODIS data during monsoon period of 2002 – 2016. Active flood plain boundary taken from 

geomorphology map is shown as red lines 



 

Table 2: Area under water on different days as observed from (a) Landsat and (b) MODIS data 

(a) Landsat (b) MODIS 

Number of days Area (in % of total area) Number of days Area (in % of total area) 

0 90.11 0 91.23 

1-20 8.48 1-5 7.23 

21-40 1.24 6-10 1.34 

40-60 0.18 11-15 0.18 

61-73 0.00 16-19 0.03 

 

3.2 Cloud-free aggregated image  

 

To ensure no distortion in the calculation of indices from the satellite data due to presence of clouds, the extra 

bands having the information about the clouds (Fmask and StateQA) are used. All available datasets in the study 

area are aggregated to get total number of cloud-free observations (NCO) for each pixel. In the said period, Landsat 

data have pixels with 28 to 187 days of cloud-free observations (out of total 297 days of observations) and MODIS 

data pixels have 11 to 80 days (out of total 214 days). Figure 5 shows the percentage of area versus availability of 

cloud-free observations for Landsat and MODIS data. The Landsat histogram shows a bi-modal distribution, 

whereas the MODIS histogram shows a uni-modal distribution.  

 

 

Figure 5: Histogram of NCO’s for (a) Landsat and (b) MODIS 

 

3.3 Normalized frequency of water occurrence  

 

After finding image of number of water days and number of cloud-free days for each pixel, both the images are 

divided to find the water pixels for the clear sky. The values in the output image i.e., in the normalized frequency of 

water occurrence image, lies between 0 and 1 with most of the values near zero (Fig. 6a for Landsat data and Fig. 

6b for MODIS data). The overall pattern of surface water occurrence in Landsat and MODIS data is similar. 

Further, the overall pattern of water occurrence as observed in the surface water aggregated image (Fig. 4) and the 

normalized frequency of water occurrence image (Fig. 6) is similar. As mentioned in section 3.1, about 90% of the 

study area can be considered as high-ground as there are no incidences of water occurrence during monsoon of 

1984-2016 (Table 3). The areas which require most attention are the ones which show high frequency of water 

occurrence. For example, about 0.01% of the total area (approx. 84 km2) is covered with water for 70-80% of the 

time as observed from Landsat data. In case of MODIS data, about 0.02% of the total area (approx. 168 km2) has 

water for 28-32% of the time. The difference in the values of normalized frequency of occurrence of surface water 

in Landsat and MODIS appears to be mainly due to differences in the number of cloud-free observations.   

 

The normalized frequency of water occurrence obtained by combining the results of Landsat and MODIS data is 

shown in Figure 6c (zoomed-in north-western portion shown in Figure 6d) and water occurrence statistics is shown 

in Table 3. The combined results show that 87.56% of the area remains free from occurrence of surface water and 

the remaining area contains water for different periods of time. As expected, the values of normalized frequency of 

water occurrence in the combined dataset have reduced as compared to that obtained from Landsat data due to 

incorporation of MODIS data. 

 



 
(a)                                                                                    (b) 

 
(c)       (d) 

Figure 6: Normalized frequency of water occurrence from (a) Landsat data (monsoon period of 1984-2016), (b) 

MODIS data (monsoon period of 2002-2016), (c) Landsat and MODIS merged data (at 60m resolution with nearest 

neighbor resampling), and (d) zoomed-in north-west portion of the study area from Landsat and MODIS merged 

data. Active flood plain boundary taken from geomorphological map is shown in red 

 

Table 3: Percentage of total area under water as a function of normalized frequency of occurrence of surface water 

from Landsat data, MODIS data, and combined Landsat and MODIS data (at 60m resolution with nearest neighbor 

resampling) 

Landsat MODIS Combined Landsat & MODIS 

Normalized 

Freq.  
Area (in % of total area) 

Normalized 

Freq. 
Area (in % of total area) 

Normalized 

Freq. 
Area (in % of total area) 

0 90.11 0 91.23 0 87.56 

>0 - 0.1 5.49 >0 - 0.04 3.56 >0 - 0.01 2.49 

0.1 - 0.2 2.01 0.04 - 0.08 2.77 0.01 - 0.07 5.02 

0.2 - 0.3 1.12 0.08 - 0.12 1.39 0.07 - 0.13 2.14 

0.3 - 0.4 0.65 0.12 - 0.16 0.65 0.13 - 0.20 1.49 

0.4 - 0.5 0.36 0.16 - 0.20 0.27 0.20 - 0.26 0.65 

0.5 - 0.6 0.18 0.20 - 0.24 0.07 0.26 - 0.39 0.58 

0.6 - 0.7 0.06 0.24 - 0.28 0.04 0.39 - 0.46 0.05 

0.7 - 0.8 0.01 0.28 - 0.32 0.02 0.46 - 0.51 0.00 

0.8 - 0.816 0.00 0.32 - 0.332 0.00 0.51 - 0.52 0.00 

 

3.4 Relation between surface water spread and geomorphology  

 

Zonal statistics for different classes of normalized frequency of surface water occurrence are generated with 

reference to three major geomorphic units i.e., active flood plain, older flood plain and older alluvial plain. Similar 



results are obtained for Landsat, MODIS and combined datasets, hence only Landsat results are presented for 

brevity (Table 4). It is seen from this table that 98.6% area of the older alluvial plain and 95.5% area of the older 

flood plain remain free from occurrence of surface water, while 78.8% area of active flood plain remains covered 

with water for different periods of time. It is also clearly visible from Figure 4 and Figure 6 that water spread is 

mainly confining to the zone of active flood plain.  

 

Table 4: Geomorphological unit-wise area under water as a function of normalized frequency of occurrence of 

surface water as derived from Landsat data 

Normalized Frequency of 

Occurrence of Surface 

Water 

Area (in % of total area in a geomorphic unit) 

Older Alluvial Plain (%) Older Flood Plain (%) Active Flood Plain & River 

(%) 

0.0 98.58 95.51 21.24 

>0.0-0.1 1.40 3.45 24.22 

0.1-0.2 0.02 0.76 13.35 

0.2-0.3 0.01 0.20 7.14 

0.3-0.4 0.00 0.06 3.76 

0.4-0.5 0.00 0.01 19.50 

0.5-0.6 0.00 0.01 8.05 

0.6-0.7 0.00 0.00 2.32 

0.7-0.8 0.00 0.00 0.40 

0.8-0.9 0.00 0.00 0.01 

0.9-1.0 0.00 0.00 0.00 

 

Thus, a strong correspondence is observed between the surface water occurrence mapped from time-series satellite 

data and geomorphology map. At some of the places, water occurrence is also seen outside (but adjacent) the active 

flood plain boundary. This may also be due to error in the active plain boundary. The study highlights the potential 

of GEE in studying time-variant surface features, such as surface water in this case, without any constraint on 

historical satellite data availability and processing infrastructure. A small area occupying about 8400 km2 is taken 

up in this case, therefore, the scalability aspect of the GEE for larger area application can be tested in further 

studies. 

 

4. CONCLUSIONS 

 

In this paper, an approach to monitor surface water spread using GEE is presented. The study uses about three 

decades (1984 to 2016) of satellite images in a part of Ghaghara river basin in the State of Uttar Pradesh of India. 

Over 500 satellite images pertaining to the monsoon season from Landsat and MODIS series are used. High 

correspondence is observed between the active flood plain and the frequency of surface water occurrence delineated 

from time-series satellite images. Such composite long-term surface water spread map can be used for flood hazard 

zonation and developmental planning. It is concluded that the studies which are data and computation intensive can 

be done quickly and with ease on cloud based geo-processing platforms, such as GEE, without any cost implication 

towards data procurement and processing. The scalability of GEE in terms of large area application can be further 

explored.    
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