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Abstract— Sub-pixel details in the hyperspectral images are generally ignored by the conventional classifiers. 

However, some recent approaches use this information to generate fine resolution land cover maps from images 

having coarse spatial resolution. Two main aspects in this regard are: 1) estimation of fractional abundances of the 

reference signatures at each pixel (spectral un-mixing); and 2) prediction of class distributions at sub-pixel scale (sub-

pixel classification). This study proposes some spectral unmixing as well as sub-pixel mapping techniques that take in 

to account certain constraints which are usually ignored by the conventional approaches. In the context of spectral 

unmixing methods, our main contribution is the analysis of auto-encoders when compared with ELM, STM and SVM.  

In case of sub-pixel mapping methods, our study may be summarized as the modelling deep auto-encoders for 

predicting the spatial distributions at target scale. Also, we have compared the effectiveness of Auto-Encoders and 

their convolutional counterparts in learning the coarse image features. Among the proposed unmixing approaches, 

autoencoder approach has given better results when compared to that of SVM and STM. The deep learning based 

sub-pixel mapping approaches have also produced good results, even for complex scenes. The sensitivities of all these 

techniques towards various tunable parameters are also analyzed.  
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I. INTRODUCTION 

Hyperspectral imaging sensors capture electromagnetic reflectance in hundreds of wavelengths, resulting in fine spectral 
but coarse spatial resolution. The standard fusion techniques, used for multispectral and panchromatic images, cannot be 
directly extended for hyperspectral datasets. Sub-pixel classification approaches, which project class-labels to finer-sized 
pixels, are found to be more effective in this context. These techniques utilize the pixel-wise endmember fractions to predict 
spatial distribution of classes. Although endmember extraction and abundance estimation approaches are widely discussed in 
the literature, their accuracy and reliability are dependent on availability of suitable libraries, initialization conditions, and 
endmember variability. These issues can be addressed by using contextual information derived from coarse images.  

Most sub-pixel classification techniques [1-5] focus on optimizing class-wise spatial dependency without considering the 
scene specific variations [6]. Recently, some geostatistical interpolation techniques have been employed to estimate the 
required target distribution [6-8]. However, the difficulty in formulating an effective structural model at finer scale limits the 
practical implementation of these works [6]. Some supervised approaches have been proposed in this regard, but they are 
generally suitable for ideal conditions where representative regions can be assumed to characterize the spectral variability of 
the entire image [9]. In short, the prediction of sub-pixel spatial distributions based on the proximity consideration is inherently 
vague [7-9]. Hence, instead of only generalizing the local spatial dependencies, it is better to refine them using coarse image 
features.  

Among the various state of the art strategies, deep learning methods have been shown to be considerable successful in 
modelling image features. However, these approaches have rarely been explored for spectral unmixing or sub-pixel mapping. 
Recently, Guo et al [10] proposed an Auto-Encoder (AE) cascade, which implicitly denoises the observed data and employs 
self-adaptive sparsity constraint to solve the unmixing problem. Arun et al [11] suggested the use of auto-encoders for sub-
pixel mapping. Similarly, convolutional neural networks have been used for super resolution [12-13]. In the present 
contribution, we investigate deep learning models for improving spectral unmixing process. We also analyse the effectiveness 
of these architectures in learning the spatial structure models at coarser scale for refining the sub-pixel classification. 

II. PROPOSED APPROACH 

In this section, we reformulate some of the recently suggested deep learning architectures for spectral unmixing and sub-
pixel classification. 



A. Autoencoder based Unmixing 

 
The The basic auto-encoders [10-11] are employed to learn parameters that can reconstruct an input vector with minimal 

error. In other words, the encoder output y=fθ(x) is decoded back to a reconstructed vector  such that the 
parameters θ and θ’ are computed by minimizing L as: 

 

 

 

where L is a loss function such as the traditional squared error  or reconstruction cross entropy 

 

 

 

However, de-noising Auto Encoders, a variation of the basic AEs, learn to reconstruct the clean repaired versions of inputs 
from their corrupted versions. This is achieved by corrupting the initial inputs by means of a stochastic mapping. 
Geometrically, DAE can be seen as a way to define and learn a manifold. AEs or DAEs are stacked together to form deep 
networks (Stacked Auto-encoders and Stacked De-noising Auto-encoders respectively) which are trained using variations of 
gradient descent approaches.  

As discussed in [10], auto-encoders can be modelled for spectral unmixing by taking the input as the observation spectra 
and setting the number of hidden neurons as the number of endmembers. However, in our study, the de-noising cascade is 
modified to capture the variation of given input from randomly selected samples of each end members. Finally, the decoding 
weight matrix corresponds to the abundance fractions, while the encoding weights serve as the basis for endmembers. The 
activation function is modified to enforce the sparsity constraint as: 

 

 

 

where gi=Wij
Txi. Through gradient learning on parameters (ai and bi), the lifetime sparseness of the neurons is accomplished. 

Although, the model adopted above can solve the unmixing problem to a certain extent, the accuracy may be improved by 
using the labelled data as well as the spatial proximity information. Moreover, as discussed in our earlier works [14], a 
classification perspective to the unmixing problem can resolve the issues of end member spectral variability, noise effects etc. 
Hence, we propose the use of adversarial auto encoders [15-18] to refine the conventional models. Unlike the previous AE 
based approaches, here a probabilistic auto-encoder performs variational inference by matching the aggregated posterior of the 
hidden code vector with an arbitrary prior distribution. Such models cluster the data in accordance to the distributions learned 
from the samples. The inverse distance of each sample from the cluster center is considered as the corresponding fractional 
abundance. 

 

B. Autoencoder based Sub-pixel Mapping 

The fractional abundances estimated using unmixing approaches are filtered based on the coarse image gradients. For each 
class, ranks are assigned to all sub-pixel positions based on their proximity to the corresponding classes in the neighborhood. 
Details of the rank image computation can be found in [11]. However, it may be noted that here we consider both spectral as 
well as spatial affinities in the process. Thus the initial rank image (Rk) for the kth class will have weights (Wik) at each sub-
pixel position (i) as: 

 

where M is the number of pixels in the neighborhood, Gij is the feature space distance between the value of the jth coarse pixel 
and the coarse pixel corresponding to the ith sub-pixel, Dij is the distance between the centroid of the jth coarse pixel and the 



subpixel position (i), and FK(j) is the fractional abundance at jth coarse pixel. The subpixel positons of each coarse pixel are 
sorted according to their weights and only the top ranked Qjk positons are retained. Here, Qjk [11] is estimated as:    

Qjk = (Z) 2 × FK(j) 

where Z is the scale to which the image need to be super-resolved and FK(j) is the fractional abundance of kth class at jth coarse 
pixel.  

Further, a stacked auto-encoder (SAE) is trained to learn the resampled version of the coarse image. Gradient descent 
approach discussed in [18-20] is used for fine tuning the network. The constrained rank image (Rck) is then fed to the SAE 
whose weights represent the coarse image features. The scaled fractional maps (ICK) thus obtained are refined by setting all the 
top ranked Qjk sub-pixel positions, at each coarse pixel, to one and rest to zero. The ambiguous pixels of ICK as well as those 
whose class compatibilities [11] are less than a given threshold are reassigned to the most frequently occurring classes in their 
neighborhood. 

Instead of using basic auto-encoders described above, we also experimented with Deep Belief Networks (Stacked 
Restricted Boltzmann Machines) [19] for learning image features.  It may be noted that the probabilistic semantics of 
Restricted Boltzmann Machines (RBMs) can be defined as: 

 

where v and h denote the state of visible and hidden layers and E is the energy function. The Contrastive Divergence algorithm 
[20] is applied for layer wise pre-training of the network, which is further fine-tuned using the Back-Propagation algorithm to 
learn the resampled coarse image.  

Although, the SAEs and DBNs capture coarse image features, networks that can learn the two-dimensional spatial 
distributions are more effective for image processing tasks. In a recent study [11], we explored the utility of convolutional 
auto-encoders for the purpose. However, defining the deconvolution and un-pooling layers in this context is not trivial, and 
performance of the approach depends on the same. Hence, we investigate the use of supervised approaches such as 
Convolutional Neural Networks (CNNs) [12] and Convolutional Deep Belief Networks (CDBNs) [20] for the purpose. Here, 
the coarse images are downscaled at multiple coarser scales to yield low and high resolution pairs for training. Limited set of 
training samples have also been used to refine the approach. 

III. RESULTS 

The proposed unmixing algorithms are compared with some AE based as well as other state of the art approaches [13-14] 
using real and simulated datasets. The spectral angle distance (SAD), and abundance estimation error (AE) are adopted as the 
comparison metrics. Lower values of AE as well as SAD indicate better unmixing. 

A. Analysis of Proposed Unmixing Algorithms 

 

 Experiments with simulated datasets 

Four synthetic hyperspectral scenes are generated using the linear mixing of spectral signatures with 188 bands from the 
USGS digital spectral library. Sensor noise is simulated using zero-mean Gaussian random noise at different levels of signal-
to-noise ratio (SNR =30, 40, and 50 dB). The accuracy analysis of the unmixing techniques over these four datasets is 
summarized in Table 1(values in bracket denote AE and those outside SAD). 

As evident from these results, the adversarial AE is better suited for unmixing when compared to the conventional AE. 
Also, the proposed refinements improve the accuracy of the state of the art AE based approaches. However, as the availability 
of training data increases SVM based approaches outperform the proposed methods. Even using 10-15% training samples, the 
performance of supervised approaches (SVM and STM) are comparable to the proposed ones. Also, at lower noise levels SVM 
as well as STM give superior performances. Although the proposed adversarial AE based approach is more resilient to noise as 
compared to SVM, STM performs still better. 

The results of the proposed methods (in terms of AE error) in unsupervised frameworks are summarized in Table 1.  It may 
be noted that the method discussed in [10] gives results comparable to FCM based approach; whereas the proposed approach 
performs even better. The performance of FCM is sensitive to the noisy data, whereas auto-encoder based approaches seem to 
be resilient. 

The proposed methods give stable results irrespective of the size of the test images (image1: 200 X 200, image2: 600 X 
600, image3: 800 X 800, image4: 1200 X 1200) as well as the number of endmembers (image1: 4, image2: 10, image3: 15, 
image 4: 23). In order to analyze the sensitiveness of these methods with respect to the complexity of mixing, the size and 
number of uniform patches in the synthetic images are changed before applying smoothing. From the results (shown in figure 
1), it can be observed that the proposed AE based approaches are less sensitive to the complexity of mixing when compared to 
[10].  

 



Experiments with real-world datasets 

It is important to analyze the sensitivity of the proposed approaches towards real-time atmospheric effects as well as other 

noises. Hence, the performances of these methods are evaluated over real world airborne/satellite datasets. Here also, SAD 

and AE measures are used for accuracy analyses. Since the ground truth abundance fraction is not available for validation, 

some representative regions are selected to identify reliable endmembers. Manual unmixing using constrained least square is 

then adopted to obtain the test data. Comparative analysis of different methods over standard datasets is presented in Table 2. 

 
 

 

Table 1. Analysis of supervised unmixing techniques 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.No SNR SVM STM [10] AE. Adv. AE 

1 

30 2.24 (3.01)               1.93 (2.19)   6.26 (4.63)                
4.91 

(3.48)                  

2.11 

(2.34) 

40 1.79 (1.68)         
1.06  

(2. 01)        
5.42 (3.87)        

3.54 

(3.24)            

1.25 

(1.93) 

50 0.47 (1.42) 0.37 (0.91) 3.60 (3.16) 
1.30 

(2.89) 

0.85 

(1.60) 

 

 

2 

30 4.20 (3.88) 3.14 (2.97) 9.46 (4.72) 
5.73 

(3.92) 

4.10 

(3.65) 

40 3.49 (3.36) 2.81 (2.52) 7.58 (4.16) 
4.77 

(3.79) 

2.94 

(3.19) 

50 1.08 (2.14) 0.74 (1.97) 4.53 (4.02) 
2.24 

(3.51) 

1.27 

(2.21) 

 

3 

30 5.39 (3.64) 5.28 (3.05) 8.65 (5.37) 
8.12 

(4.28) 

5.43 

(3.29) 

40 4.08 (3.15) 3.32 (2.73) 5.44 (4.50) 
4.35 

(4.06) 

3.81 

(3.09) 

50 3.40 (2.76) 3.05 (2.14) 5.17 (4.23) 
3.82 

(3.94) 

3.58 

(2.94) 

4 

30 5.07 (4.33) 4.59 (3.70) 7.61 (5.85) 
5.60 

(5.18) 

5.85 

(4.06) 

40 4.91 (3.27) 4.52 (2.74) 6.06 (4.27) 
5.43 

(4.81) 

5.13 

(3.94) 

50 4.14 (2.89) 3.57 (2.42) 5.50 (3.89) 
4.85 

(4.66) 

4.29 

(3.21) 



 

 

 

Table 2. Comparative analysis of proposed methods 

 

 

Dataset Method AE error SAD 

Indian pines 

SVM  2.17 3.39 

STM 1.34 2.47 

[10] 3.08 5.66 

AE  2.43 3.58 

Adversarial AE 1.96 2.64 

Pavia 

SVM  2.54 3.90 

STM 1.82 2.21 

[10] 4.18 5.17 

AE  3.25 4.12 

Adversarial AE 1.98 2.83 

KSC 

SVM  3.30 4.08 

STM 2.61 3.79 

[10] 4.28 6.55 

AE  3.57 4.30 

Adversarial AE 2.23 3.96 

 

Salinas 

SVM  1.89 2.87 

STM 0.94 1.21 

[10] 2.72 3.29 

AE  1.78 2.91 

Adversarial AE 1.44 1.40 

Botswana 

SVM  4.15 5.61 

STM 3.67 3.52 

[10] 5.28 8.03 

AE  4.26 5.79 

Adversarial AE 3.40 4.56 

 

From the table, it is clear that the proposed methods give stable results that are in agreement with their performances over 

synthetic datasets. Visual illustration of the results on the Salinas dataset is presented in Figure 1 and the corresponding end 

members are presented in Figure 2. The execution times (in secs) of various methods have been measured and are 

summarized in Table 3. As evident, proposed Auto-encoder based approaches are computationally comparable with STM but 

are better than SVM as well as [10].  
 

 

 
                                                                       a) Original image    b) Class-1       c) Class-2 

                                                                        
                                                                       d) Class-3    e)Class-4 

 

Figure 1. Results of the proposed AE method on Salinas dataset 
 



 
 
 

 

Figure 2. Endmembers derived from Salina dataset 

 

 

 

 

 
Table 3. Computational analysis of proposed methods 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Analysis of Proposed Sub-pixel Mapping Algorithms 

To qualitatively analyze the effectiveness of the proposed deep learning strategies on real datasets, the outputs for down 

sampled input images are compared with the corresponding ground truth. The close similarity between the two indicates 

better performance. The Kappa statistics [2] and overall accuracy [3-4] measures are used to quantitatively evaluate these 

approaches, where higher values of both indicate better classification. The results of proposed approaches are illustrated in 

Figure 3 and Table 4. 
 

 

Dataset Method Computation time (secs) 

Cuprite 

SVM  94 

STM 88 

[10] 125 

AE  104 

Adversarial AE 85 

Indian Pines 

SVM  75 

STM 67 

[10] 108 

AE  95 

Adversarial AE 62 

Salinas 

SVM  46 

STM 40 

[10] 63 

AE  54 

Adversarial AE 49 
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                                                 a) Indian Pine image                     b) Reference image                        c) Down sampled image 

 

                                                
                                              

                                                d) SAE based                  e) CAE based 
 

 

Figure 3. Results of prop. methods on Indian Pines dataset 
 

 

As evident from Table 4, the use of Convolutional Auto Encoders yields the best results, followed by DBNs and SAEs. This 
is due to the fact that two-dimensional learning networks can better represent coarse image features than their one-dimensional 
counterparts. It may be noted that the proposed improvements on SAEs and DBNs lead to better performances as compared to 
the conventional AE based approaches; in most cases DBNs perform better than SAEs. On the contrary, CNNs and CDBNs 
give poor performance in most cases which may be attributed to the limited use of training data. The class wise performance of 
both methods on Pavia dataset, summarized in Table 5, reveals that these approaches are well suited for smooth varying 
classes. For instance, these methods give better results for certain classes such as brick, bare soil, and asphalt compared to 
heterogeneous classes such as Trees, and Tiles. This is probably because the training samples used for the latter are inadequate 
for capturing the spectral variability of heterogeneous classes. 

It can be concluded that CNNs and CDBNs are not optimal choices for sub-pixel classification if the training samples are 

limited. The execution times (in secs) of various methods have been measured and are summarized in Table 6, which indicate 

that convolutional approaches are computationally simpler when compared to their conventional counterparts. Further, the 

proposed methods except convolutional auto-encoder are more complex than the STM based approach [14].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Comparative analysis over standard datasets 

Method Dataset Accuracy Kappa 

SAE 

Indian Pines 86.19 0.84 

Pavia 83.21 0.83 

Salinas 88.92 0.87 

KSC 83.94 0.83 

Botswana 78.18 0.76 

DBN 

Indian Pines 88.27 0.85 

Pavia 84.19 0.82 

Salinas 89.56 0.90 

KSC 85.87 0.82 

Botswana 77.62 0.71 

Convolutional AE 

Indian Pines 94.95 0.92 

Pavia 84.31 0.86 

Salinas 95.59 0.93 

KSC 88.32 0.86 

Botswana 84.49 0.82 

Convolutional Neural Network 

Indian Pines 80.76 0.79 

Pavia 78.32 0.76 

Salinas 82.21 0.81 

KSC 75.38 0.75 

Botswana 70.29 0.68 

Convolutional DBN 

Indian Pines 84.92 0.85 

Pavia 81.70 0.80 

Salinas 86.15 0.84 

KSC 82.44 0.81 

Botswana 71.63 0.72 

 

 

Table 5. Class-wise accuracy analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. No Class CNN DBN CAE 

1 Water 84.13 87.64 90.59 

2 Trees 76.48 77.92 84.05 

3 Asphalt 78.91 84.27 87.38 

4 Bricks 71.13 76.65 85.49 

5 Bitumen 69.47 73.71 80.67 

6 Tiles 74.39 78.40 83.76 

7 Shadows 68.54 75.27 77.04 

8 Meadows 78.09 78.59 82.93 

9 Bare Soil 83.73 85.63 88.39 



 
Table 6. Summary of computational expenses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main factor that affects the performance of any deep learning implementation is the number of layers. In this paper, we 
also investigate the factors that determine the optimal number of layers required for the deep network. The result of these 
analyses, as presented in Figure 4, reveals that the required optimal depth of the deep network and will vary from the dataset to 
dataset. It may also be noted that the shallow layers generally give less accuracy, and the accuracy deteriorate as the number of 
layers cross beyond the optimal value. To investigate further, the accuracy of the deep network with respect to different band 
combinations has also been tested. The results of the same for the Indian pines dataset is summarized in Figure 5.  It is worth 
noting that the peak performance corresponds to the optimal subset of the bands, but further addition/ reduction of bands 
deteriorates the performance. This trend continues to be independent of the number of layers. Further analyses also revealed 
that the number of layers required to get the maximum performance also increases with the complexity of the spectral mixing 
and the number of end members 

 

 

Figure 4. Analyses of deep learning framework 

 

Dataset Method Computation time (in secs) 

Cuprite 

SAE 132 

DBN 124 

CAE 87 

CNN 109 

CDBN 95 

Indian Pines 

SAE 84 

DBN 76 

CAE 58 

CNN 71 

CDBN 64 

Salinas 

SAE 53 

DBN 59 

CAE 43 

CNN 61 

CDBN 53 



 

Figure 5. Analyses of learning over band combination 

 

IV. CONCLUSION 

This study investigates the use of deep learning architectures in predicting the distribution of classes at subpixel level. Our 
results show that adversarial AE auto-encoders are effective in estimating the end member abundances when compared to the 
basic stacked auto encoders. Proposed approaches give optimal performance in par with the supervised methods and even 
outperform the latter in cases of limited training samples. Among the various deep learning models, the convolutional 
autoencoders have been found to be better suitable for sub-pixel classification. It has been found that the supervised approaches 
such as CNN and CDBN are sensitive towards the availability of training samples as well as the homogeneity of classes. Also, 
the optimal depth of the learning network is found to be dependent on the number of end members, scene complexity and band 
combinations.  
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