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ABSTRACT: In Taiwan, the relative accuracies between benchmarks decreased due to the significant surface 
displacement with time and earthquake caused by the frequency activity of the crustal plate. Therefore, the Ministry 
of the Interior in Taiwan has re-surveyed the first-class benchmarks on the regular basis, and announced the 
orthometric heights of the benchmarks in different years, i.e. 2002, 2003, 2009 and 2015 respectively. 
To mitigate the systematic errors between orthometric heights obtained in different time and then facilitate the 
implementation of GNSS leveling, various corrector surfaces model are proposed in this paper. According to the 
preliminary test results, they show that after applying the optimal corrector surface models on corresponding cites, 
the accuracies of the difference of orthometric heights in each city are significantly improved, which is helpful for 
improving the accuracy of GNSS leveling. 
 
1. INTRODUCTION 
 
The Global Positioning System (GPS) provides the observations with respect to geocentric World Geodetic System 
1984 (WGS84). However, the so called ellipsoidal heights (h) derived by GPS must be transformed into orthometric 
heights (H) for practical applications (Cakir and Yilmaz, 2014). This transformation is applied with the knowledge 
of undulation (N) that must meet sufficient accuracy (Erol and Erol, 2013). Although orthometric heights, ellipsoidal 
heights and undulation are quite different, mainly in terms of physical meaning, datum definition, observational 
methods, they should satisfy the geometrical relationship as Eq. 1 shown (Kavzoglu and Saka, 2005). 

H = h − N  (1) 

where H is the orthometric height, the distance of a point on the earth from the geoid along curved plumb line; h is 
the ellipsoidal height, the distance of a point on the earth from the surface of the reference ellipsoid along the normal; 
N denotes the undulation, the difference between ellipsoidal height and the orthometric height with respect to the 
geoid (Gullu et al., 2011). 
According to Eq.1, it can be seen that if the undulation (N) of a point is known, then the ellipsoidal height of that 
points can be easily transformed to orthometric height. This process is referred to GPS leveling. Theoretically, 
orthometric height can be derived with the combination of GPS, e-GPS or e-GNSS observation and the undulation 
model with sufficient accuracy. Nevertheless, with frequent crustal plate movements in Taiwan, there is a decrease in 
relative accuracy between benchmarks. In other words, assume that the undulation hasn’t changed, then orthometric 
heights on points are about to change with time. 
The Ministry of the Interior in Taiwan announced the results of Taiwan’s first-class leveling net in 2002, 2003, 2009 
and 2015 respectively. If there are systematic errors exist among the orthometric heights announced in different years, 
they may be due to: (1) Taiwan is situated at the convergent boundary of the Philippine Sea and the Eurasian plates 
(Chen et al., 2011) (2) The variation in the orthometric heights announced in different years depend on time; (3) There 
are inherent inconsistencies exist among announced orthometric heights, etc (Lin, 2014). To mitigate the systematic 
errors, many corrector surface models like polynomial model, similarity transformation model, conicoid fitting 
method and artificial neural network have been proposed and fit the systematic errors well (Hu et al., 2002; Hu et al., 
2004; Lin, 2014; Stopar et al., 2006). Therefore, for the purpose of fitting the orthometric heights announced in 
previous year to the latest one, corrector surface models mentioned above are used to fit the systematic errors between 
different orthometric heights announced in different years. Furthermore, the optimal corrector surface model are 
selected through some specific statistical tests. 
 
 
2. METHODOLOGY 
 
2.1 The difference of orthometric heights announced in different years 
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Assume that 𝐻𝐻92, 𝐻𝐻98 and 𝐻𝐻104 represent the orthometric heights announced in 2003, 2009 and 2015 respectively. 
Then the difference among these three orthometric heights are expressed as Eq. (2) to Eq. (4): 

∆𝐻𝐻𝑖𝑖98−92 = 𝐻𝐻𝑖𝑖98 − 𝐻𝐻𝑖𝑖92   (2) 

∆𝐻𝐻𝑖𝑖104−92 = 𝐻𝐻𝑖𝑖104 − 𝐻𝐻𝑖𝑖92  (3) 

∆𝐻𝐻𝑖𝑖104−98 = 𝐻𝐻𝑖𝑖104 − 𝐻𝐻𝑖𝑖98  (4) 

i = 1,2, … , n   

where n stands for the number of benchmarks.  
In order to mitigate the systematic errors among the orthometric heights announced in different year, several corrector 
surface models are proposed in this study. An appropriate corrector surface model should absorb the inconsistencies 
of orthometric heights on points and allow the previous orthometric heights to fit the later one. 
From Eq. (5), function F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)  or 𝑎𝑎𝑖𝑖𝑇𝑇𝑥𝑥  represents the corrector surface model. This function can take various 
forms and complexity degree (Erol et al., 2008; Fotopoulos, 2003, Lin, 2014). 

∆𝐻𝐻𝑖𝑖 = F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑣𝑣𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑣𝑣𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 (5) 

where ∆𝐻𝐻𝑖𝑖 means the orthometric height difference calculated by orthometric heights announced in different years; 
x(n × 1) = vector of unknown parameters; 𝑎𝑎𝑖𝑖(n × 1) = vector of known coefficients, (x, y) represents the plane 
coordinates of points and 𝑣𝑣𝑖𝑖= residual term.  
 
 
2.2 Corrector surface models 
 
The corrector surfaces models used in this paper include polynomial model, similarity transformation model, conicoid 
fitting method and artificial neural network. Each method will be introduced respectively as following: 
 
 
2.2.1 Polynomial model  
 
The polynomial of degree n used to fit the systematic errors expressed as Eq. (6) (Cakir and Yilmaz, 2014): 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑗𝑗=0

𝑛𝑛
𝑖𝑖=0   (6) 

where (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) represents the plane coordinate of a point.; F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) stands for the difference of orhometric heights 
announced in different years corresponding to (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖); 𝑎𝑎𝑖𝑖𝑖𝑖 is the coefficient term of the polynomial. Four, six and 
ten parameters polynomial models expressed as Eq. (7) to Eq. (9) are used in this study. 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑦𝑦𝑖𝑖 + 𝑎𝑎3𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖  (7) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑦𝑦𝑖𝑖 + 𝑎𝑎3𝑥𝑥𝑖𝑖2 + 𝑎𝑎4𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑎𝑎5𝑦𝑦𝑖𝑖2  (8) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑦𝑦𝑖𝑖 + 𝑎𝑎3𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑎𝑎4𝑥𝑥𝑖𝑖2 + 𝑎𝑎5𝑦𝑦𝑖𝑖2 + 𝑎𝑎6𝑥𝑥𝑖𝑖3 + 𝑎𝑎7𝑦𝑦𝑖𝑖3 + 𝑎𝑎8𝑥𝑥𝑖𝑖2𝑦𝑦𝑖𝑖 +
𝑎𝑎9𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖2    (9) 

 
 
2.2.2 Similarity transformation model 
 
Eq. (10) represents the four-parameters similarity transformation model. From Eq. (10), vector x contains four 
elements. (Andritsanos et al., 2000; El-Mowafy et al., 2006; Fotopoulos, 2003; Iliffe et al., 2003; Kotsakis and 
Katsambalos, 2010; Lin, 2014; Vella, 2003; Ziebart et al., 2004) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 + 𝑥𝑥2𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑖𝑖 + 𝑥𝑥3𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑖𝑖 + 𝑥𝑥4𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑖𝑖  (10) 
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The five-parameters and seven-parameters similarity transformation model shown in Eq. (11) and Eq. (12) are 
expanded by Eq. (10) (Abdalla and Fairhead, 2011; Benahmed Daho, 2010; Fotopoulos, 2003; Kiamehr, 2011; Vella, 
2003): 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 + 𝑥𝑥2𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑖𝑖 + 𝑥𝑥3𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑖𝑖 + 𝑥𝑥4𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑖𝑖+𝑥𝑥5𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑𝑖𝑖 (11) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑖𝑖 + 𝑥𝑥2𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑖𝑖 + 𝑥𝑥3𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑖𝑖 + 𝑥𝑥4 �
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑖𝑖

𝑊𝑊
� +

𝑥𝑥5 �
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑖𝑖

𝑊𝑊
� + 𝑥𝑥6 �

1−𝑓𝑓2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑𝑖𝑖
𝑊𝑊

� + 𝑥𝑥7(𝑠𝑠𝑠𝑠𝑠𝑠
2𝜑𝜑𝑖𝑖
𝑊𝑊

)  

(12) 

where w = �1 − e2sin2φi; e2 = eccentricity; f = flattening of the reference ellipsoid. 
 
 
2.2.3 Conicoid fitting method 
 
The conicoid fitting method is usually used to establish the undulation model using geometric method. (Hu et al., 
2004; Lin, 2007). Three types of conicoid fitting method are tested in this study, which are four-parameters, six-
parameters and ten-parameters as Eq. (13), Eq. (14) and Eq. (15) expressed respectively. 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 + 𝑥𝑥2𝜑𝜑𝑖𝑖 + 𝑥𝑥3𝜆𝜆𝑖𝑖 + 𝑥𝑥4𝜑𝜑𝑖𝑖𝜆𝜆𝑖𝑖  (13) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 + 𝑥𝑥2𝜑𝜑𝑖𝑖 + 𝑥𝑥3𝜆𝜆𝑖𝑖 + 𝑥𝑥4𝜑𝜑𝑖𝑖𝜆𝜆𝑖𝑖 + 𝑥𝑥5𝜑𝜑𝑖𝑖2 + 𝑥𝑥6𝜆𝜆𝑖𝑖2  (14) 

F(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝑥𝑥1 + 𝑥𝑥2𝜑𝜑𝑖𝑖 + 𝑥𝑥3𝜆𝜆𝑖𝑖 + 𝑥𝑥4𝜑𝜑𝑖𝑖𝜆𝜆𝑖𝑖 + 𝑥𝑥5𝜑𝜑𝑖𝑖2 + 𝑥𝑥6𝜆𝜆𝑖𝑖2 + 𝑥𝑥7𝜑𝜑𝑖𝑖3 + 𝑥𝑥8𝜑𝜑𝑖𝑖2𝜆𝜆𝑖𝑖 + 𝑥𝑥9𝜑𝜑𝑖𝑖𝜆𝜆𝑖𝑖2 + 𝑥𝑥10𝜆𝜆𝑖𝑖3  (15) 

Suppose that there are n benchmarks with its known plane coordinates and corresponding ∆H  distributed in a 
specific test area, then any corrector surface model mentioned above can be used to fit ∆H. The matrix form of 
observation function can be expressed as follows (Lin, 2014): 

Ax = ∆H + v  (16) 

where A = design matrix composed of 𝑎𝑎𝑖𝑖𝑇𝑇 for each ∆H𝑖𝑖. The unknown parameters x can be determined through 
least-squares adjustment (Ghilani, 2010). 
 
 
2.2.4 Artificial neural network 
 
Neural networks (also known as artificial neural network) were composed of artificial neurons. The behavior of 
artificial neurons is based on the decision-making process of a human brain. The input information of the neuron is 
multiplied by the synaptic weights adjusted during a training process, and then they are added and subjected to an 
activation function that generates the output information. (Lin, 2014; Veronez et al., 2006; Gullu et al., 2011). 
Back-propagation (BP) ANN is a multilayer feed-forward network and a supervised learning network. Feed-forward 
networks often have one input layer and one or more hidden layers of sigmoid neurons followed by an output layer 
of linear neurons (Hu et al., 2004; Kavzoglu and Saka, 2005; Lin, 2007; Lin, 2014). In this paper, a three-layer BP 
ANN with one input layer, one hidden layer, and one output layer was adopted to generate a corrector surface model 
It is complicated when applying BP ANNs. Especially for the specification of the number and size of the hidden 
layer(s) and the choice of proper values for network parameters, they would affect the network’s learning ability, 
generalization, and the performance of the learning algorithm. Therefore, it is often the case that a number of 
experiments are required to ascertain the selection of the parameter values that give the highest accuracy. On the other 
hand, A trial-and-error strategy is frequently used to determine appropriate values for these parameters (Hu et al., 
2004; Kavzoglu and Saka, 2005; Lin, 2007; Lin, 2014). 
Suppose there are n reference points in a specific region. The reference point set P = (𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛) shown as Eq. 
(17) are used to train the BP ANN. 

𝑃𝑃𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,Δ𝐻𝐻𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑛𝑛  (17) 

From Eq. (17), the input vector consists of points’ plane coordinate (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and the output vector is composed of 
corresponding difference of orthometric heights Δ𝐻𝐻𝑖𝑖. On the other hand, the number of neuron in hidden layer is 
determined by trail and error. 
After the training of data set, the function between input layer (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and output layer Δ𝐻𝐻𝑖𝑖 is shown as Eq. (18). 
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∆𝐻𝐻𝑖𝑖 = 𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1,2, …𝑛𝑛  (18) 

where 𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)= function that associates input vectors (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) with specific output vectors Δ𝐻𝐻𝑖𝑖. It should be noted 
that 𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)  is similar to the coefficients of the parametric models. However, the function of 𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)  is 
determined implicitly by the neurons in the hidden layer of the BP ANN (Lin, 2014). 
 
 
2.3 Performance evaluation and statistical analysis procedures 
 
To mitigate the systematic errors of the orthometric heights announced in different years, various corrector surface 
models were applied . In this way, the optimal corrector surface model can be determined and then the orthomatric 
heights announced in previous year can be fit to the later one. All the test data were separated into two groups: 
reference points and check points. The reference points were used to estimate the coefficients of parametric models 
or train BPANN. The check points were used to estimate the performance of corrector surface models. 
The optimal corrector surface model was determined based on a series of statistical tests. First, t-test was conducted 
to examine whether the systematic errors of orthometric heights announced in different years exists or not. Then 
various methods (ex: similarity transformation) mentioned above were applied for the area containing systematic 
errors. Afterwards, three optimal corrector surface model candidates: optimal, sub-optimal, and the third best 
corrector surface model can be determined. 
With these three corrector surface model being applied on the primary orthometric heights, t-test and 𝜒𝜒2-test was 
conducted to determine the optimal corrector surface model of the specific test area. 
In summary, three types of statistical tests and calculation methods were further implemented to estimate the 
performance of three optimal corrector surface model candidates: (1) the improvement in σ; (2) a two-tailed t-test 
on the mean value of ∆H; (3) a two-tailed 𝜒𝜒2-test on the variance of ∆H. 
The improvement in σ were defined as Eq. (19) shown. 

The improvement in σ = 
𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
× 100%  (19) 

where 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represent the standard deviation of ΔH at the check points before and after applying the 
specific corrector surface model. 
A two-tailed t-test with a significance level of α =5% was conducted to examine if there is any systematic errors 
occurred in the sample as a whole by testing the deviation of the sample mean from the mean of its population 
(assumed to be zero). This test involves checking the sample mean (𝑦𝑦�) of ∆H from the check points against the 
population mean (μ = 0.000m) . Moreover, the null hypothesis in this test is 𝐻𝐻0:𝜇𝜇 = 𝑦𝑦� ; on the other hand, the 
alternative hypothesis is 𝐻𝐻𝑎𝑎:𝜇𝜇 ≠ 𝑦𝑦� (Ghilani 2010). 
A two-tailed 𝜒𝜒2-test with a significance level of α =5% was performed to check : (1) if the variance of ∆H at the 
check points (after applying a optimal corrector surface model) was the same as after applying an sub-optimal and 
the third best corrector surface model. (2) if the variance of ∆H at the check points (after applying a optimal corrector 
surface model) was the same as before applying any corrector surface model. The test involved: (1) checking the 
variance of ∆H(𝑆𝑆2) after applying specific optimal corrector surface model against the variance of ∆H(𝜎𝜎2) after 
applying an sub-optimal and the third best corrector surface model. (2) checking the variance of ∆H (𝑆𝑆2 ) after 
applying specific optimal corrector surface model against the variance of ∆H (𝜎𝜎2 ) before applying any corrector 
surface model. Furthermore, the null hypothesis in this test is 𝐻𝐻0: 𝑆𝑆2 = 𝜎𝜎2 ; on the other hand, the alternative 
hypothesis is 𝐻𝐻𝑎𝑎: 𝑆𝑆2 ≠ 𝜎𝜎2 (Ghilani 2010). 
 
 
3. STUDY AREA AND TEST DATA 
 
The study area selected in this paper is Taiwan region. The test data distributed in study area were first-class 
benchmaks with known plane coordinates and orthometric heights published in 2002, 2003, 2009 and 2015 
respectively. Considering the surface relief caused by natural and human factors, the study area was divided into five 
segments: north area, middle area, south area, east area and land-subsidence area. As Fig.1 shown, the north area 
contains Keelung city, Taipei city, New Taipei city, Taoyuan city and Hsinchu county/city. The middle area contains 
Miaoli county, Taichung city and Nantou county. The land-subsidence area contains Changhua county, Yunlin county, 
Chiayi county/city and Tainan city. The south area contains Kaohsiung city and Pingtung county. The east area 
contains Yilan county, Hualian county and Taitung city. The number of points distributed in every county/city were 
listed in Table 1. 
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Fig. 1 Five parts of the test area (left graph) and its corresponding cities/counties included (right graph) 

Table 1. The number of points distributed in every county/city 
North area Keelung  New Taipei Taipei Taoyuan Hsinchu 

Number 13 91 27 78 63 
Middle area Miaoli Taichung Nantou   

Number 55 96 73   
South area Kaohsiung Pingtung    

Number 135 146    
East area Yilan Hualian Taitung   
Number 117 132 102   

Land-subsidence 
area Changhua Yunlin Chiayi Tainan  

Number 73 28 90 118  
 
 
4. DATA ANALYSIS 
 
4.1 The variation in 𝚫𝚫𝚫𝚫  
 
Due to the limited page, only three cities/counties were represented their variation in ΔH in this paper as Fig. 2 to 
Fig. 4 shown. From Fig. 2 to Fig. 4, it can be seen that the variation in ΔH in each city/county is different with one 
another. On the other hand, the results of t-test conducted to examine whether the systematic errors in ΔH exist or 
not were shown in Table 2. In Table 2, 「T1」,「T2」and 「T3」 represents ∆𝐻𝐻98−92, ∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 
respectively;「○YE

A」means the object contains systematic errors. From Table 2, it can be seen that most cities/counties 
contain systematic errors. 

 
Fig. 2 The variation in ∆𝐻𝐻98−92,∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 in New Taipei city. 
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Fig. 3 The variation in ∆𝐻𝐻98−92,∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 in Changhua county. 

 
Fig. 4 The variation in ∆𝐻𝐻98−92,∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 in Yunlin county. 

Table. 2 The results of conducting t-test on mean value of ∆𝐻𝐻98−92,∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 in each city/county
「T1」,「T2」and 「T3」 represents ∆𝐻𝐻98−92, ∆𝐻𝐻104−98 and ∆𝐻𝐻104−92 respectively;「○YE

A」means the 
object contains systematic errors 

 
 
 
4.2 Corrector surface models establishments and systematic errors mitigation 
 
To mitigate the systematic errors in ΔH in each city/county, two main solutions were used in this paper. One is using 
single corrector surface model to fit the systematic errors in ΔH for each city/county (e.g. Taipei city shown in Table 
3). As for the cities/counties whose systematic errors ΔH cannot be mitigate and allow the standard deviation of ΔH 
improved significantly with single corrector surface model, the test data distributed in that cities/counties were then 
separated into two groups (e.g. area A and area B of Changhua shown in Fig. 5) to establish the respective corrector 
surface models (e.g. Changhua county/city shown in Fig. 5 and Table 4). 
In Table 3 and Table 4, the optimal corrector surface model denotes the tested corrector surface model has the smallest 
standard deviation of ΔH  in each determined model. The 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  represents the standard 
deviation and the mean value of ΔH  before applying corrector surface model respectively. The 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the standard deviation and the mean value of ΔH after applying corrector surface model 
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respectively. According to Table 3 and Table 4, it can be seen that: (1) the optimal corrector surface model of Δ𝐻𝐻98−92, 
Δ𝐻𝐻104−92 in Taipei city and Δ𝐻𝐻98−92, Δ𝐻𝐻104−98 and Δ𝐻𝐻104−92 in Changhua county are 2 × 35 × 1 BPANN, six-
degree polynomial, 4-parameter similarity transformation + 5-parameter similarity transformation, 4-parameter 
conicoid fitting + 10-parameter conicoid fitting and 4-parameter conicoid fitting + 10-parameter conicoid fitting 
respectively; (2) the standard deviation of ΔH significantly reduced and the mean values of ΔH more approximate 
to zero after applying an optimal corrector surface model. 

Table 3. Performance of ΔH in Taipei city before and after applying the optimal corrector surface model 

City/ County Optimal corrector surface model 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

Taipei Δ𝐻𝐻98−92 2 × 35 × 1 BPANN 0.0070 0.0036 0.0067 -0.0013 

Δ𝐻𝐻104−92 Six-degree polynomial 0.0100 0.0044 0.0056 -0.0007 

 
Fig 5. The points distribution in area A and area B of Changhua (the upper figure) and their reference points and 

check points distribution (the bottom figure) 

Table 4. Performance of ΔH in Changhua before and after applying the optimal corrector surface model 

City/ time/area Optimal corrector surface model 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(𝑚𝑚) 

Changhua 

Δ𝐻𝐻98−92 A 4-parameter similarity transformation 0.1656 0.0393 0.1434 -0.0016 B 5-parameter similarity transformation 

Δ𝐻𝐻104−98 A 4-parameter conicoid fitting 0.1014 0.0346 0.0800 0.0029 B 10-parameter conicoid fitting 

Δ𝐻𝐻104−92 A 4-parameter conicoid fitting 0.2415 0.0444 0.2235 0.0032 
B 10-parameter conicoid fitting 

 
 
4.3 The standard deviation of 𝚫𝚫𝚫𝚫 before and after applying the specific corrector surface model for each 

county/city 
 
Fig. 6 to Fig. 8 show the variation of the standard deviation of ΔH before and after applying the specific corrector 
surface model for each county/city. It can be seen that the standard deviation of ΔH in each listed city/county was 
reduced. On the other hand, from the results of t-test(α = 5%), there are no systematic errors in ΔH after applying 
the specific corrector surface models. Moreover, according to the results of 𝜒𝜒2-test(α = 5%), the standard deviation 
of ΔH reduced significantly after applying the specific corrector surface models. 
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Fig 6. The standard deviation of Δ𝐻𝐻98−92 before and after applying the specific corrector surface models 

 
Fig 7. The standard deviation of Δ𝐻𝐻104−98before and after applying the specific corrector surface models 

 
Fig 8. The standard deviation of Δ𝐻𝐻104−92before and after applying the specific corrector surface models 

 
 
5. CONCLUSIONS  
 
To discuss the variation among the ΔH calculated by orthometric published in different year, and to mitigate the 
systematic errors contain in ΔH for the purpose of improving the accuracy of GPS/GNSS leveling, the test data 
established in 2002, 2003, 2009 and 2015 are used in this paper.  
With the complexity of surface relief, various mathematical fitting methods (e.g. the conicoid fitting model, the 
similarity transformation model and the polynomial model) proposed in this paper may have their limitation owing 
to their model limitation Therefore, other algorithm can be applied for the application with high accuracy requirement. 
The issues discussed in this paper includes: (1) Analyze and examine the variation in ΔH; (2) T-tests was used to 
examine whether the systematic errors of ΔH exists or not. (3) The corrector surface models were established for 
the area containing systematic errors. (4) 𝜒𝜒2 -test was used to examine whether the standard deviation of ΔH 
improved after the specific corrector surface model was applied, etc. 
According to the test result, it can be seen that: (1) Due to the different variation in ΔH in each region, the corrector 
surface models varies from place to place. (2) There are no systematic errors exist after the proper corrector surface 
models were applied. (3) The accuracies of the difference of orthometric heights in each city are improved 
significantly , which is helpful for improving the accuracy of GNSS leveling. 
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