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ABSTRACT: In this study, deep neural network is utilized as another approach for improving accuracy of the 
precipitation based on microwave-sensor. And The ensemble Bayesian model averaging(EBMA), which employs a 
weighting scheme for each member using posterior probability, in order to produce a more improved blending of 
precipitation from multi-satellite and to evaluate the effect of accuracy improvement. Experiments to improve rain 
rate were carried out based on data obtained from Global Precipitation Measurement (GPM) Microwave Imager 
(GMI). Input data for the DNN model include 7 brightness temperatures (Tb), ice water path (IWP), convective rain 
rate, scattering index (SI) and land sea mask is used. The experiment for blending of precipitation product was 
performed using rain rate product of three satellites and sensors, namely GMI of GPM core observatory, special 
sensor microwave imager/sounder (SSMI/S) of the Defense Meteorological Satellite Program (DMSP) F16 and 
microwave humidity sounder (MHS) of NOAA-18. In both experiments, precipitation product of the Dual-frequency 
Precipitation Radar (DPR) of CO was used as reference data. The probability density function(PDF) of gamma 
distribution combined with logistic regression is used to estimate the probability and quantity of precipitation for 
considering the characteristics of precipitation. And then, the exponent for these two functions and the percentile 
threshold of the cumulative density function were set by optimizing simulations. After that, the validation statistics 
of the blending precipitation through comparison with precipitation obtained from DPR is carried out. 

1. INTRODUCTION

Precipitation is an important factor in the hydrological cycle, and global distribution and intensity are essential for 

understanding and feedback of the Earth system. The estimate by remote sensing is used for measurement of the 

global precipitation. Satellite remote sensing using microwaves is easy to determine the global precipitation 

distribution and its amount. Passive microwave(PMW) sensors are generally used for estimating the precipitation. 

Rain rate product of The Goddard profiling(GPROF) algorithm provided from the global precipitation 

measurement(GPM) mission was improved compared with previous estimating methods. However, improvements 

are still needed. This is because it is difficult to express the microscopic characteristics of the state of water droplets 
in the clouds and the precipitation of the ground in a linear relationship. Artificial neural network(ANN) has the 

advantage of being able to express these nonlinear relationships(Sanò et al. 2015). Recently, deep neural 

network(DNN) that solves the disadvantages of the existing ANN has been used in various fields. Precipitation 

estimation using satellites requires not only accuracy but also large spatial coverage. It is difficult to identify the 

global precipitation distribution using a single satellite. Therefore, various institutions generate and distribute 

synthetic fields. Most of them use simple merging or the closest estimates for overlapping regions. This means that 

no consideration is given to differences in individual uncertainties for each dataset. EBMA is a weighted average of 

post-probability density functions using post-probability as a weight. It is possible to generate predictions by 

considering the difference of each uncertainty of the individual data for the overlapping regions when generating the 

composite field. In this study, DNN was used to improve the accuracy of rainfall intensity product based on data 

generated by GPROF algorithm. In addition, we confirmed the applicability and improvement in the overlapping 
areas by using EBMA for the blending product. 

2. DATA

2.1 Data for DNN test 

For the DNN test to improve the accuracy of the precipitation product based on the PMW sensor, seven Tb data, IWP, 
convective rain rate, SI, and land sea mask data were used as input data. Tb data was obtained from Global 

precipitation mission(GMI) core observatory(CO) / GPM microwave imager(GMI) level 1C data provided by PPS. 

The IWP and convective rain rate are similarly provided by PPS and Level 2A, which is generated by the GPROF 

algorithm. SI was obtained using the SI calculation formula of the defense meteorological satellite program(DMSP) 

/ special sensor microwave imager/sounder(SSMI/S). Land sea mask was used to obtain reanalysis data of European 
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centre for medium-range weather forecasts(ECMWF). 

 

2.2 Data for EBMA test 

 

For the blending test, the rain rate products provided by PPS were obtained. GPM CO / GMI, DMSP F-16 / SSMIS, 
and national oceanic and atmospheric administration(NOAA)-18 / Microwave Humidity Sounder(MHS) GPROF rain 

rate product Level 2A data were used. 

 

2.3 Reference data 

 
Dual-frequency precipitation radar(DPR) is one of the prime instruments onboard the GPM CO. It uses an active 

microwave sensor, that is radar. This allows more direct information acquisition than PMW. Therefore, DPR rainfall 

data was used as a reference for improving precipitation product and calculating weight for blending. In this study, 

the surface precipitation data of the GPM Ku Level 2 normal scan(NS) region was used to construct many matchups. 

 

2.4 Study area and period and preprocessing of data 

 
The study area is set in the region of Northeast Asia, which is not verified much compared to the existing studies, and 

is set from 20˚N to 50˚N degrees and from 100˚E to 150˚E. Data were ingested from 2016 to 2018 in the test for DNN 

t, and data from April 2014 to April 2016 were used for the composite field test. All inputs carried out resampling 

process with same grid for match-up processing. The grid was resampled with 0.1 degree for DNN applications and 

0.25 degree for blending tests. 

 

3. METHODS 
 

3.1 Deep neural network 

 

Artificial intelligence is a technology that simulates human intelligence through computer training. Artificial 

neural networks are a kind of artificial intelligence such as machine learning and are widely used for classification 
and prediction in various studies. Artificial neural networks have the advantage of estimating complex nonlinear 

functions (Chen et al., 2006;, 2009). Deep neural networks combine the advantages of neural networks and 

machine learning through deep networks of multiple hidden layers. Previous multilayer neural networks had 

problems with local minima. Local minima means that to stop the change of weights at local convergence values 

before the entire data is represented. Since this is a local convergence value, it is difficult to express the relationship 

of the overall nonlinear model to be expressed.In the DNN, the local minima problem is improved with the 

activation function that prevents the gradient loss of the loss function during the backpropagation process, which 

updates the weight and bias set in the forward and reverse directions of the network. General machine learning 

techniques also present the problem of overfitting. Overfitting means lower errors in the training data due to 

excessive training but larger errors in the prediction. Overfitting can be prevented through regularization 

techniques such as L1, L2, and dropout techniques. The DNN needs to be optimized through the above techniques 

to represent the nonlinear relationship between the input and output data. In this study, an optimal DNN model 
was constructed to represent the relationship between input data and precipitation through tests on hidden layer 

setup, dropout, and L2 regularization. 

 

3.2 Ensemble Bayesian model averaging(EBMA) 

 

EBMA is a statistical ensemble technique that uses the PDF as a weighted average of individual members (Raftery 

et al., 2005; Sloughter et al., 2007). In terms of the value of the second data, the EBMA PDF is expressed as (1). 

 

 p(y|𝑓1 , … , 𝑓𝐾 ) =  ∑ 𝑤𝑘ℎ𝑘(𝑦|𝑓𝑘)𝐾
𝑘=1  (1) 

where 𝑤𝑘denote the posterior probability as the weight, ℎ𝑘(𝑦|𝑓𝑘) is a posterior PDF. Precipitation is a type of 

gamma distribution with a high frequency of zero and a significant skewness of the distribution. In order to apply 

EBMA to precipitation data, logistic regression and gamma distribution were used. As shown in (2), it is expressed 

as the sum of non-precipitation (𝐼[𝑦 = 0]) and precipitation (𝐼[𝑦 > 0]) elements.  
 

 ℎ𝑘(𝑦|𝑓𝑘) =  𝑝(𝑦 = 0|𝑓𝑘) 𝐼[𝑦 = 0] + 𝑝(𝑦 > 0|𝑓𝑘)𝑔𝑘(𝑦|𝑓𝑘)𝐼[𝑦 > 0] (2) 

The non-precipitation component is the form of logistic regression. It can be represented by (3). 
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 𝑝(𝑦 = 0|𝑓𝑘)  ≡  log
𝑝(𝑦 = 0|𝑓𝑘)

𝑝(𝑦 > 0|𝑓𝑘)
  =  𝑎0𝑘 + 𝑎1𝑘𝑓𝑘

𝑚 + 𝑎2𝑘𝛿𝑘 (3) 

Where, subscripts 𝑎 are coefficient of logistic regression. And, 𝛿 is the adjustment fator, which is 1 when the 

member is zero, and 0 otherwise. Also 𝑚  is the number of root converting to prediction. The precipitation 

components can be represented using a gamma distribution. The gamma distribution is expressed as PDF as (4) 

with a shape parameter (𝛼) and a scale parameter (𝛽). 

 

 𝑔𝑘(y|𝑓𝑘) =  
1

𝛽
𝑘

𝛼𝑘Γ(𝛼𝑘)
𝑦𝛼𝑘−1exp (−𝑦/𝛽𝑘) (4) 

The gamma distribution parameters for each data can be obtained using (5) and (6) using the mean(𝜇𝑘) and 

variance(𝜎𝑘
2) of the data values. 

 𝜇𝑘 =  𝑏0 + 𝑏1𝑓𝑘
𝑚 = 𝛼𝑘𝛽𝑘 (5) 

 𝜎𝑘
2 =  𝑐0 + 𝑑1𝑓𝑘 = 𝛼𝑘𝛽𝑘

2 (6) 

Thus, the final EBMA model is the same as (7). 

 

 p(y|𝑓1 , … , 𝑓𝐾 ) =  ∑ 𝑤𝑘 [𝑝(𝑦 = 0|𝑓𝑘) 𝐼[𝑦 = 0] + 𝑝(𝑦 > 0|𝑓𝑘)𝑔𝑘(𝑦|𝑓𝑘)𝐼[𝑦 > 0]]𝐾
𝑘=1  (7) 

 

 

4. RESULT 
 

In order to improve the accuracy of rain rate data, the training and optimizing the DNN model of two stage were 

carried out with 70% of the total matchups. These two steps are models for precipitation classification and 

estimating regression using DNN. As a result of the optimization through iteration, for the classification, the hidden 

layer is consisted of two layers with 200 nodes and the epoch was set to 100. And the hidden layer is consisted of 

three layers with 100 nodes, and the epoch was set to 240 for regulation. Regularization and dropout experiments 

were carried out only on the DNN regression model. For regularization, it is confirmed that the accuracy of the 

model decreases as the dropout and L2 regularization ratio increases. This means that the training data contains 

the variety of information, the training dataset can fully satisfy the ability of regularization. Table 1 shows the 

error rates of the DNN classification model. Compared to GPROF, probability of detection (POD) and Heidke 

skill score (HSS) were improved. False alarm ratio (FAR) was somewhat higher is was slight difference. 

 
Table 1 Probability of detection(POD), false alarm rate(FAR) and Heidke skill score (HSS) of DNN classification 

and GPROF. 

 POD FAR HSS 

GPROF 0.818 0.084 0.743 

DNN 0.912 0.097 0.814 

 

When comparing the rain rate data obtained from the GPROF data and the DNN, the correlation coefficient 

improved by 17.0% ((0.778-0.665) /0.665) in the verification data. The root mean square error(RMSE) also 
showed improvement of 25.0% ((1.918-1.439) /1.918) in the verification data. 

 

 

Table 2 . Correlation coefficient(r), mean bias(MB), mean absolute error(MAE) and root mean square 

error(RMSE) of rain rate retrieved from GPROF and DNN according to rain rate of DPR for training and validation. 

DNN_only_Tb is the model generated by only brightness temperature and DNN is generated by all input variable. 

 r MB MAE RMSE 

Train 

GPROF 0.662 0.075 0.964 1.932 

DNN_only_Tb 0.743 0.016 0.785 1.527 

DNN 0.785 0.002 0.710 1.414 

Validation 

GPROF 0.665 0.083 0.963 1.918 

DNN_only_Tb 0.744 0.013 0.787 1.529 

DNN 0.778 0.006 0.718 1.439 
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In the experiment for generating the blending data, the exponent , 𝑚, for (3) and (5) were set to 1/2 through 

iteration. Since the rain rate cannot be directly obtained from the EBMA PDF, the rain rate must be derived by 

converting the PDF into a cumulative distribution function and taking the inverse function of this CDF. As a result 

of selecting and comparing various threshold on the CDF, it was finally set to 70%. Table 2 shows the error from 

EBMA data by comparing mean and median ensembles, a commonly used method of blending. 

 
Table 3  The correlation and error statistics of mean ensemble, median ensemble and EBMA blending. 

Method r 
Mean bias 

(mm/hr) 

MAE 

(mm/hr) 

RMSE 

(mm/hr) 

EBMA 0.694 -0.081 0.770 1.352 

Ensemble mean 0.623 -0.169 0.825 1.568 

Ensemble median 0.634 -0.244 0.807 1.523 

 

 

5. CONCLUSION 

 

The two DNN models were used to improve the precipitation product of GPROF, which is rain rate estimation 
algorithm using PMW sensor. In order to generate the optimal DNN model, the optimal hidden layer, the number 

of nodes, and the training frequency epoch were selected through an iterative process. So classification of 

precipitation using the DNN showed higher score on POD and HSS than GPROF. Rain rate improved by the DNN 

model showed a higher and more consistent correlation coefficient than the output of the existing GPROF 

algorithm. The monthly comparison also showed the consistent error rate. Blending experiment of multiple 

precipitation data was done using EBMA. Compared with the average and median ensembles that are generally 

used, it showed highest correlation coefficient and lowest error. In addition, when the distribution was confirmed 

through the mapping of the results, the discontinuous distribution of overlapping regions was not seen, and the 

accuracy improvement effect was shown compared to the ensemble members. 
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