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ABSTRACT: It is a powerful tool to count lunar craters for estimating lunar age. It has been up to
human eyes to identify and/or count lunar craters with lunar images. However, there are many
difficulties in this way due to have potential errors by human eyes. Recently, Christopher(2019) and
Silburt et al.(2016) carried to identify the craters at Mars and Moon. Although the results have about
10% error, the cause of error can be clearly defined as using machine. We will try to identify and/or
count lunar crates using previous or modified deep-learning model. The data required for learning
and testing is WAC/NAC in LROC. We consider to apply to the data of ShadowCam, based on the
experience gained through this study, although there are some problems to be solved. The problems;
1) whether or not the model, which is learned with WAC/NAC in LROC, can be applied to the data
of ShadowCam, after studying the optical properties of PSR, 2) the distortion of topography on polar
region. We expect that there are technological advances for calculating the age of solar system bodies
by crater counting using deep-learning.
Thanks : This research was conducted by NRF (2018M1A3A3A02065832) support.

1. INTRODUCTION

Research methods for estimating the age of surface creation using surface craters in objects such as
Moon, Mars, where the atmosphere is sparse, and airless bodies are very common. The moon is
estimated to be about 4.5 billion years old, but it's not clear when the moon is. So many people are
still doing research on the age of the moon, and the methods of study are also diverse.

1.1 Sheets for Papers and Typing Lunar Age by Crater Counting

The method of estimating the age of a solarsystem body using crater counting is applied to airless
body or the crater have many craters due to the lack. The age of the moon estimated using crater
counting can be calculated from the radiometric age and the relative age.

Radiometric age calculation is estimated by deriving a parameterized function of crater diameter
and number, Neukum et al. (2001) (Eg. 1) and Neukum et al. (2001) applies a number of
functions from Hartmann et al.(2007) (Eq.2). There is listed in table 1.

N() = a(exp(BT) = 1) +yT 1)

N(1) = a(exp(BT) — 1) + yT + 6T? (2

Table 1. Parameters for function (Robbins, 2014)

o § Y 0
Original data” 9.83-10% 16.7 1.19-10°3
Original data” 9.83-10% 22.6 9.49-10* 1.88:10*
HPF Fit did not converge
HPF 9.07-10% 29.6 1.38:10* 4.43-10*
NPF 8.56-107%2 17.3 1.29-10°3

NPF 6.61-10™ 24.41 9.45-10* 2.00-10°3
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NPF 9.36-10 30.3 1.93-10°
NPF 2.55-10°% 21.1 3.18-10°° -4.20-10™

* ”Original data” refers to the raw counts discussed throughout Robbins (2014) work except for the Apollo 14, Cone,
North Ray, and South Ray craters.

HPF: Hartmann et al.(2007)

NPF: Neukum et al.(2001)
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Figure 1. Radiometric age calculated by HPF and
NPF. Panel a is log scale, panel b is focused to near
120Myr, and panel c is different with new chronology
and class chronology

The meaning of N (1) in the above function means the number of craters 1 km or more in diameter,
that is, the crater density within 1 million km?(Figure 1). Robbins (2014) used the above functions
to calculate the radiometric age of the lunar surface using the crater counting.

Relative age is to calculate crater density against crater diameter for a specific area where age is
known and to estimate relative age as reference on this density. The crater collision frequency of
the lunar surface began to decrease after Late Heavy Bombardment of the Solar System, and the
collision frequency of the smaller craters was relatively higher than that of the larger craters. The
result, which varies from region to region, allows us to estimate moon surface age relatively
(Figure 2).
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Figure 2. Cumulative crater with crater diameter. Pre-
Nectarian: ~3.92-4.2 Gyr, Nectarian: 3.85-3.92 Gyr,
Imbrian: 3-3.85Gyr, Copernican-Eratosthenian: after

3Gyr.("An Introduction to Solar System” © The Open
University)

1.2 Considering to Count Craters

The lunar surface has not been fixed since its formation, but has been changed in various forms by
various situation. When colliding, the impactor and surface are melted by pressure and temperature
(melting), and the surface melted floats (flooding) and blankets the existing craters as it flows
(blanketing). And, the moment the impactor hits the surface, the material on the collision surface
will spring up and fall around, forming a secondary crater. It has a different shape depending on the
collision angle of the impactor, the surface properties, the nature and size of the impactor, and the
topography of the surface. We, however, do not include the secondary crater on crater counting for
age estimating, and we have to need identify the craters. In addition, to calculate exactly the age,
we consider all of them such as, the superposition, mass wasting, and volcanic crater, and among
them have to count the crater by collision. Therefore, the most important factor in calculating age
by using crater counting is crater identification problem considering all the above items in lunar
images. The human eye is still the most accurate, but unstable human error is a problem, and
counting and counting numerous craters by eye is also a matter of time and labor. Crater counting
with deep learning was attempted, and the next chapter introduces crater counting with deep
learning on the moon and Mars.

2. PAST AND CURRENT RESEARCHES
Crater counting of solar system objects is the most important issue in identifying craters in images,
and Crater Detection Algorithms (hereafter CDAs) have been most applied. Crater identification in
images began in 1962 by Hough discussing the problem of identifying crater rims. In this chapter,
we introduce an example of deep-learning using the images of Moon and Mars. Initially, craters
were identified by enhancing the edges of the rims as identifying the crater rims in the
panchromatic image. In addition, this method has been developed into genetic algorithms by
Honda, Lijima, & Konishi, 2002, and radial consistency algorithms by Earl, Chicarro, Koeberl,
Marchetti, & Milnes, 2005 and others(Stepinski, Ding and Vilalta). It is concluded that this is not
very different from the result of the stereo images (Figure 3).
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Figure 3. The result of monoscopic image and
stereoscopic image at Apollo 15 landing site.
(Neukum, K6NIG, and Arkani-Hamed, 1975)

Stepinski, Ding and Vilalta mentions, that there are two issues for toward robust detection of
craters; 1) identification of craters from topography, 2) identification of craters from images. The
case 1) is applied on flooding algorithm by O’Callagnan & Mark (1984), and the same method is
applied with different data set in the case of Mars and Moon (Figure 4). In this case, the core
module is to detect craters that have crescent-like shadows by shadows (Figure 5).
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Figure 4. Crater detection from topographic data. left) craters and candidated crater, right)
craters. (Stepinski, Ding and Vilalta)



Figure 5. The result by “candidates” module (Stepinski,
Ding and Vilalta)

There are many problems in CDAs such as, complex nature of craters, large variation in shape by
illumination, orders of magnitude size differences, and overlap and degradation, and human error
during labeling.

Silburt et al. (2018) attempted to deep-learn the moon craters with supplemented these problems.
Convolutional Neural Network (hereafter CNN) used digital elevation model (hereafter DEM) data
implemented by Lunar Orbiter Laser Altimeter (hereafter LOLA) on Lunar Reconnaissance Orbiter
(hereafter LRO) and Laser Altimeter (hereafter LALT) on Selene. The results are as follows
(Figure 6, Figure 7, table 2), and the error of about ~ 11% appears.
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Figure 6. Post-processed craters and ground-truth crater (Silburt et al. 2018)
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Figure 7. Lunar crater size-frequency distribution by deep-
learning model (Silburt et al. 2018)

Table 2. Accuracy metrics by post-CNN (Silburt et al. 2018)

Accuracy Metric Post-CNN Post-processed Post-CNN Post-processed
(validation) (validation) (test) (test)
Recall 56%+20% 92% 57% = 20% 92%
Recall (r<15 pixels) 83% + 16% - 83% * 13% -
Precision 81% + 16% 53% 80% + 15% 56%
New crater % 12% + 11% 45% 14% + 13% 42%
False positive rate - - - 11% + 7%
Frac..lon. error 10%* 250 13%*30% 10%325 11%+3%
Frac. Lat. error 10%720 10%80 10%22% 9%+ 708
Frac. Radius error 8%:208 6%*5% 8%+1% 7% 5%

3. APPLYING IMAGES OF SHADOW REGION
The goal of this study is to identify the craters from the permanent shadow area image of the Moon
obtained by ShadowCam. Therefore, based on the model constructed using the Moon crater, we
want to learn the craters that exist in the shadow region. Recently, the LROC team provided images
of the permanent shadow region by increasing the SNR using multiple polar images (Figure 8).
Some craters were taken 100%, but some parts were taken, so we plan to use only 100% footage
for training and testing (Figure 8).
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Figure 8. Permanent Shadow Region by NAC/LROC
(https://www.lroc.asu.edu/psr/)

We plan to conduct research in two ways (Figure 9). In case 2), we plan to use the map data by
WAC/LRO. The map data by WAC/LRO are corrected in geometry and photometry correction. We
are going to crop the map for the reasonable size. The data is published on Planetary Data System
(PDS), anyone can download them.

1) Current model based on LROC data 2) suitable model for PSR
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Figure 9. research processing

4. DISCUSS
ShadowCam will be mounted on the Korea Pathfinder Lunar Orbiter (hereafter KPLO), scheduled
for launch in December 2020, to photograph permanent shades. Permanent shadow region is the
area where the sun's light does not come in at all due to the shadow of the terrain due to the small
tilt of the celestial axis. The water on the Moon may be to exist in permanent shadow region where
the temperature is very low because it does not contain sunlight in the form of ice, and ShadowCam
aims to explore the water here (Figure 10).



Figure 10. left) imaginary picture of ShadowCam (https://www.nasa.gov/feature/nasa-selects-
shadowcam-to-fly-on-korea-pathfinder-lunar-orbiter)
right) Map of PSR at high latitude (https://www.lroc.asu.edu/psr/)

We are not able to do observation at PSR be directly observed. The images of PSR are made using
secondary scattering by the walls of the craters or terrain around the PSR. It is, therefore, expected
that it is different from the existing image because it is the image observed by the changed light,
such as wavelength and intensity etc. We try to analyze the image characteristics of secondary
scattering using crater images of Mercury and Ceres' PSR, and then apply them to the model. We
expect that the results are very useful for crater identification along with image acquisition of PSR
of the Moon that has never been revealed previously.
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