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ABSTRACT: One of the air pollutants from industrial waste and transportation combustion is 
Sulfur Dioxide (SO2). Previous studies have shown that SO2 has a serious impact on human health, 
in particularly on respiratory problems. By taking Taiwan as the study area, this study aimed to 
assess the spatial-temporal variability of SO2 using a neural network-based land use regression 
model. Daily SO2 observations during 2000 to 2018 were obtained from 73 monitoring stations 
established by Taiwan Environmental Protection Agency (EPA). Totally, around 0.48 million 
observations were collected for our analysis. Several databases were used to collect the spatial 
predictor variables, including EPA environmental resources database, meteorological database, 
land-use inventory, landmark database, digital road network map, DTM, MODIS NDVI dataset, 
and thermal power plant distribution database. To establish the integrated approach, conventional 
land-use regression (LUR) was first used to identify the important predictors variables. After that, 
a deep neural network (DNN) algorithm was applied to fit the prediction model.  
The results showed that, the adj-R

2
 obtained from the conventional LUR approach was 0.37. Of

the 15 variables selected by the stepwise variable selection procedure, PM10, nearest thermal 
power plants, and NO2 are important variables that increased the SO2 exposures with the 
explanatory ability up to 18%, 6%n and 4%, respectively. Compared to the conventional LUR 
approach, by combining DNN algorithm can improve the model explanatory ability up to 21% 
(adj-R

2
=0.59). The results of 10-fold cross validation and external data verification confirmed that

the value of the adj-R
2
 after combining both approaches increased from 0.37 to 0.59, and RMSE

decreased from 2.48 ppm to 2.01 Findings of this study confirm that the combination of LUR, and 
DNN algorithm can improve the prediction performance level and the explanatory abilities in 

assessing spatial-temporal variability of SO2 exposure. 

1. INTRODUCTION

The rapid development of economy and industrialization, accompanied by emissions from

factories and transportation, has led to a deterioration in air quality. Among them, Sulfur Dioxide 

(SO2) is one of the most common Sulfur Oxides in the air, and it is known for being irritant and 

toxic. The main sources of SO2 are due to the combustion of industrial petrochemical fuel and coal 

burning, not to mention sulphuric acid and phosphate fertilizers that produce industrial waste gas, 

as well as exhaust emissions from motor vehicles. Many studies have shown long-term exposure to 

high concentrations of Sulfur Dioxide (Sulfur Dioxide, SO2) can affect the function of the 

respiratory system, and promote allergic rhinitis, bronchitis and asthma morbidity (Chiang et al., 

2016, Yuan et al., 2015a, Yuan et al., 2015b) , which has a serious impact on health. 

Based on the restrictions on the number and distribution of air quality monitoring stations of 

the Environmental Protection Administration (EPA) of the Executive Yuan, the unique and 

complex regional pollution sources such as diverse catering patterns and temples on Taiwan Island 

are scattered in densely populated and busy communities. These areas all have possibility to 

increase the spatial variation of the concentration of air pollution. In order to solve this problem, 

several methods for estimating outdoor air pollution concentration have been developed 
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internationally, such as Spatial Interpolation, Dispersion Model, and Land Use Regression (LUR) 

(Vardoulakis et al., 2003, Pfender et al., 2006; Wang et al., 2014; Wang et al., 2015; Wu et al., 

2015; Weichenthala et al., 2016).The land use regression model uses GIS and Remote Sensing (RS) 

to obtain possible spatial concentration prediction variables such as population density, land use, 

traffic related variables and other related predictive variables. 

The land use regression model combined with air quality monitoring data and statistical 

models, can find the best predictors of pollution concentration, and then establish a statistical 

relationship between land use and pollutant concentration to estimate the spatial variation of air 

pollutants. In recent years, with the development of Geographic Information Systems (GIS) 

technology, the problem of large-scale spatial data analysis and collection has been solved. 

Therefore, compared with other methods, the land use regression model has gradually. An 

important worldwide method for estimating wide range air pollution concentration. On the other 

hand, with advances in artificial intelligence (AI) and the rise of information technology, not only 

do they spark big changes on the original operating model within the industry, it also provides a 

new approach to big data analysis. While some studies have applied this technology to the 

estimation of air pollution, they mainly focused on the prediction of the concentration of air 

pollution monitoring stations within a short amount of hours, and the influencing factors and traits 

that they took into consideration were mostly meteorological related, topographic related and also 

have a lot to do with air pollution concentration spatio-temporal autocorrelation. These analyses 

currently do not include the distribution of surrounding pollution sources and their impact on urban 

air pollution changes. Also, land use regression and machine learning algorithms are not combined 

to estimate the spatial variability of island-wide resolution SO2 under the influence of climate 

change.  

Therefore, the purpose of this study is to collect the SO2 concentration and the land use survey 

from the Central Meteorological Bureau as well as the road network devaluation map, the landmark 

database, the NDVI, the DTM, etc. of the Air Quality Monitoring Station of the Taiwan 

Environmental Protection Administration (EPA) as an example. A hybrid model can be established 

using land use regression and deep neural network algorithms to estimate the long-term calendar 

spatial and temporal distribution of sulfur dioxide in Taiwan Island.   
 

2. MATERIALS AND METHODSTITLE 

 

2.1 Study Area 

Taiwan locates in the East Asia and neighbours with China to the west, Japan to the northeast, 

and the Philippines to the south. It stretches over a geographical area of 36,193 km
2
.With a 

population of 23,476,640, the averaged population density of Taiwan is 649 people/km
2
 ranked as the 

17th most densely populated country in the world. Traffic emissions from more than 22 million 

registered motor vehicle contributes significantly to urban air pollution. Moreover, diverse culture-

specific SO2 emission sources such as traffic and industry with  not only elevate the level of 

pollutants, but also increase the difficulty in predicting spatial-temporal variability of SO2 and their 

constitutes in Taiwan. 
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Figure 1. Spatial distributon of the seventy three monitiring staitons in Taiwan. 

 

2.2 Databases 

Daily SO2 observations during 2000 to 2018 were obtained from 73 monitoring stations 

established by Taiwan EPA. Totally, around 0.48 million observations were collected for our 

analysis. Including several databases were used to collect the spatial predictor variables, including 

EPA environmental resources database, meteorological database, land-use inventory, landmark 

database, digital road network map, Digital Terrain Model with 20m resolution, landmark databases, 

and MODIS NDVI database, and thermal power plant distribution database. 

 

2.3 Methodology 

To establish the integrated approach, conventional land-use regression (LUR) was first used to 

identify the important predictors variables. Using Circular buffers surrounded to the monitoring sites 

were generated with the radius from 50m to 5000m. Land-use allocation within each buffer range 

were calculated, such as road density, distribution of residential areas, industrial parks, green spaces, 

temples, and Chinese restaurants. Pollutants levels of the monitoring stations were then regressed the 

land-use allocation information, and a supervised stepwise procedure referred to Wu et al. (2017) 

applied to develop the LUR models applied of a deep neural network (DNN) algorithm was applied 

to fit the prediction model was then to develop models for estimating the spatial-temporal variability 

of SO2 constitutes across the main-island of Taiwan. 

 

3. RESULTS AND DISCUSSION 
Automatic Learning rate formula of the model was LearnRate_value × 1 /( 1 + decay_value × 

epoch_value) and as soon as the LOSS is less than 0.9 mode, stop immediately.Epoch value of model 
development was set for 210, during each epoch descending gradient method was used for minimizing 
the error. To optimize the model performance, package ‘Adam’ was used for optimizing the model and 
the loss function package ‘mean_absolute_error’ was used for identifying the mean absolute error (MAE) 
between model predictions and observations within the model.   

The results showed that, the adj-R
2
 obtained from the conventional LUR approach was 0.37. Of the 

15 variables selected by the stepwise variable selection procedure, PM10, nearest thermal power plants, 
and NO2 are important variables that increased the SO2 exposures with the explanatory ability up to 18%, 
6%n and 4%, respectively. Compared to the conventional LUR approach, by combining DNN algorithm 
can improve the model explanatory ability up to 21% (adj-R

2
=0.59).Findings of this study confirm that 

the combination of LUR, and DNN algorithm can improve the prediction performance level and the 
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explanatory abilities in assessing spatial-temporal variability of SO2 exposure. 
 

Table 1. SO2 model result 

Variable β P-value Partial R
2
 VIF 

LUR model 

performance 

DNN model 

performance 

intercept -1.264 <0.05 
  

R
2
=0.37 

Adj R
2
=0.367 

RMSE=2.482 

R
2
=0.59 

Adj R
2
=0.585 

RMSE=2.015 

PM10 0.023 <0.05 0.188 1.698 

Thermal power plant 

distance 
0.000 <0.05 0.066 1.547 

NO2 0.125 <0.05 0.043 1.963 

port_distance 0.000 <0.05 0.033 1.160 

Landfill_distance 0.000 <0.05 0.021 1.114 

temperature 0.067 <0.05 0.020 1.649 

water_distance 0.001 <0.05 0.011 1.085 

humidity -0.023 <0.05 0.004 1.193 

bus_distance 0.000 <0.05 0.003 1.060 

Incinerator_distance 0.000 <0.05 0.003 1.476 

summer 0.463 <0.05 0.002 1.603 

Press 0.004 <0.05 0.001 1.248 

Sandstone_distance 0.000 <0.05 0.001 1.114 

wind direction 0.088 <0.05 0.001 1.363 

localroad_width_distance -0.001 <0.05 0.001 1.180 

 

4. CONCLUSIONS 

Findings of this study confirm that the combination of LUR, and DNN algorithm can improve 

the prediction performance level and the explanatory abilities in assessing spatial-temporal 

variability of SO2 exposure. 
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