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ABSTRACT: In the process of point cloud data acquisition, the Terrestrial Laser Scanner (TLS) is often affected by 
many factors, such as the instrument itself, the external environment, the scanning target, etc. These factors reduce 
the observation accuracy of point cloud coordinates to a certain extent, making the obtained coordinates and the real 
coordinates of the measured points not corresponded, which directly influences the results of subsequent point cloud 
processing. In this paper, a new self-calibration model of scanner is established based on the observation principle of 
TLS technology and the similarity transformation model to analyse the range error and angle error of the scanner, so 
as to weaken the influence of system error on point cloud coordinate sequences. In addition, the new scheme can take 
into account the random errors in the observation vectors. Finally, based on the non-linear Gauss-Helmert model and 
the total least squares theory, the Gauss-Newton iteration algorithm is used to solve the system error parameters and 
conversion parameters. The experimental results show that, compared with the traditional coordinates transformation 
scheme, the coordinate sequence accuracy after system error correction is higher and closer to the real value. 
 
1. INTRODUCTION 
 
TLS technology adopts non-contact measurement method, which can quickly acquire massive point cloud data on 
the target surface in a short time. In recent years, it has been widely used in three-dimensional reconstruction, cultural 
relics protection, deformation monitoring, digital city and other fields. Compared with the traditional single-point 
acquisition method, it greatly improves the work efficiency and measurement accuracy. 
Three-dimensional data of laser point cloud is calculated based on polar coordinate system according to the oblique 
distance, horizontal and vertical angles obtained by the instrument. In the measurement process of TLS, systematic 
errors such as ranging, angle measurement, incident angle, target reflectivity and temperature are indispensable. 
These errors directly determine the accuracy of point cloud data, and to some extent, weaken the accuracy of 
subsequent point cloud processing. Usually, users can correct or evaluate the results of scanning measurement 
according to the application environment and nominal accuracy of the instrument, but the actual scanning accuracy 
of the instrument does not always correspond to the nominal accuracy, so it is necessary to make a reasonable 
determination. 
Based on the observation equation of the scanner, (Zhang Yi et al., 2012) established a system error model, and 
realized the overall solution of the system error and conversion parameters by using spatial similarity transformation. 
(Mao Aiquan et al., 2014) studied the ranging error rule of the TLS by using high-precision baseline calibration field, 
and deduced the error correction modes of the additive constant and multiplicative constant. The additive constant 
and multiplication constant of laser scanner are obtained by baseline comparison method by (Liu Chun et al., 2009), 
and the angle measurement accuracy is tested by using the method of shafting error correction of total station. After 
calibration, the instrument can reach the nominal accuracy. (Xie Hongquan et al., 2014) used the angle measurement 
data of total station as the reference to study the horizontal angle observation accuracy of scanner under different 
distance conditions. Based on the principle of scanner ranging and error sources, (Zhao Song et al., 2013) established 
a ranging error model via the intensity of return light; (Xie Rui et al., 2008) analyzed and studied the point position 
accuracy of scanner under different experimental conditions, pointed out that the scanning distance error increases 
with distance. Angle, reflector and environmental factors are not the fundamental sources of midpoint error. 
Furthermore, The midpoint error is mainly caused by the instrument itself. (Guan Yunlan et al., 2014) constructed a 
self-calibration model of ground laser scanner with 11 parameters on the basis of spatial similarity transformation, 
and carried out systematic error calibration for HDS3000 scanner. For AM-CW TLS system, (Derek D, 2006) 
proposed a rigorous method for TLS self-calibration using a network of signalized points by adding a set of additional 
parameters; (Xiaolu Li et al., 2018) established an angle measurement error model by the ray-tracing method involves 
five types of mounting angle errors, to calibrate a lab-built terrestrial laser scanner; (J. C. K. Chow et al.,2012) used 
different primitives to calibrate Leica HDS6100 and Trimble GS200 scanner. 
Based on the observation equation of TLS and the theory of spatial similarity transformation, a self-calibration model 
of scanner with 12 parameters is constructed, including three translation parameters, three rotation parameters, one 
scale parameter and five instrument system error parameters. Finally, the Gauss-Newton iteration method from (Shen 
Y et al., 2011) is used to solve the conversion parameters and system errors, simultaneously.  
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2. SELF-CALIBRATION MODEL 
 
The ground laser scanner uses an independent right-handed coordinate system. Its original point is located in the 
center of the scanner. The X-axis is in the transverse scanning plane. The Y-axis is perpendicular to the X-axis in the 
transverse scanning plane, and the Z-axis is perpendicular to the X-Y plane. The original observation data of TLS are 
slant distance s, horizontal angle θ and vertical angle α, i.e. (s, θ,	α), which belong to polar coordinate system. 

 
Figure 1 Polar coordinate system 

 
In order to obtain the three-dimensional coordinates of the target point relative to the origin, it is necessary to 
transform the original observation value into Cartesian coordinate system. Equation (1) is the transformation model 
for the above two coordinate system, i.e. the observation equation of TLS. 
 

   (1) 

 
For scanning at different stations, according to the observation equation of TLS, although the factors of target and 
environment are different, the influence on scanning results is shown in the systematic errors of ranging and angle 
measurement (Zhang Yi et al., 2012). Similar to the total station, because the scanner uses photoelectric ranging 
method, there are two kinds of systematic errors in ranging: adding constant m and multiplying constant 𝜆. Owing 
to the errors in the manufacture and installation of the instrument and the changes in the course of its use, there are 
usually collimation axis error c and horizontal axis error i in horizontal angle observation. Besides, there is vertical 
index error 𝛿 in vertical angle observation. 
The correction results of collimation axis error c and horizontal axis error i to horizontal angle observations can be 
expressed as below: 
 

   (2) 

 
The self-calibration scheme proposed in this paper is based on the similarity transformation model. These system 
errors in the point cloud data are all taken as unknowns, then it is solved by indirect adjustment theory with conversion 
parameters as a whole. The self-calibration model consists of 12 parameters, namely, 5 system error parameters, 3 
translation parameters, 3 rotation parameters and 1 scale parameter. The function model of self-calibration method is 
as follows: 
 

   (3) 

 
where [X Y Z]T and [x y z]Tare the coordinate observation vectors of the scanning points in the adjacent 
stations. [eX eY eZ]T and [ex ey ez]T represent the random errors of the corresponding observation vectors. 𝜇 
is the scaling transformation parameters. [∆x ∆y ∆z]T is the translation parameters, and R is the rotation matrix, 
computed as below: 
 
   (4) 
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   (5) 

where (φ,	ω,	κ) is the rotation parameter vector, i.e. the Euler angles rotating around the Y axis, the X axis and the 
Z axis, respectively. The least square algorithm can effectively eliminate the influence of random errors in point cloud 
data but not systematic errors. Considering the Eqs. (1) - (3), the self-calibration function model can be abstracted as 
a kind of EIV model: 
 
   (6) 
 
where 
 

   (7) 

 
The parameter vector is: 
 

   (8) 

 
3. DERIVATION OF SELF-CALIBRATION MODEL 
 
Since the self-calibration model is a non-linear model essentially, the Gauss-Newton method of non-linear least 
squares is adopted to derive the solution. We assume that the approximate values of e1 and e2 are e1

0  and e2
0 , 

respectively. The parameters’ approximate values of the self-calibration model are set up as: 
 

   (9) 

 
The right-hand members of Eq. (6) is expanded at *x0, e1

0	, e2
0+ through Taylor series as: 

   (10) 
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   (11) 

 
By substituting Eq. (11) into Eq. (10) and Eq. (10) can be sort out as following: 
 
   (12) 
 
where dx and A0 represent the correction vector matrix of the parameters and coefficient matrix, respectively. 
Considering Eqs. (9) - (11), dx and A0 can be expressed as: 
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The Lagrange objective function of self-calibration model is constructed as below: 
 
   (14) 

 
where K is the “Lagrange multiples” with dimensions n	×	1. The solution of this target function can be derived by 
means of Euler-Lagrange necessary conditions, namely, the partial derivatives are zero after obtaining partial 
derivatives of each variable. 
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   (15) 

 
According to Eq. (14) and (15), we can readily obtain the correction vector of unknown parameter as below: 
 

   (16) 

 
where 
 

   (17) 

 
Thereby, the parameter vectors and random errors of observation vectors after the first (j+1) iteration are updated as: 
 

   (18) 

 
Regardless of the minimum term , at the end of iteration, the sum of weighted squares of residual can be 
expressed as: 
 

   (19) 

 
As a consequence, the unit weight median error and covariance matrix of the estimated parameters can be estimated 
via Eqs. (19) and (16) as following: 
 

   (20) 

 
The systematic error self-calibration model of TLS can be realized via the following steps: 
(1) Determining the iterative initial value of the unknown parameters.  
We can use the linear transformation model to obtain the initial values of transformation parameters. Or take a simpler 
approach that the scale parameter is set to One, and the translation parameter and rotation parameter are set to Zero. 
In terms of system errors, it can be considered that all kinds of errors are completely eliminated in the manufacture 
and installation of the instrument, and the initial value of system error can be set to Zero (guan et al., 2014). 
(2) Iteration process 
(a) Calculating the required coefficient matrix A, covariance matrix Qc and observation vector matrix L for the ith 
iteration by Eqs. (13) and (17). 
(b) Predicting dx, x and e through Eqs. (16) and (18). 
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(c) Substituting the updated dx, x and e into Eqs. (13) and (17) to obtain A, Qc and L for the next iteration. 
(d) Repeating (a) – (c) process until dx is less than a set positive threshold and terminate iteration. 
(e) Transforming the coordinates of other points into target coordinate system based on the predicted 12 parameters. 
(3) Accuracy evaluation. 
 
4. EXPERIMENTS AND RESULTS 
 
Using the measured point cloud coordinate sequence from (Guan Yunlan et al., 2014) as the experimental data. 
HDS3000 scanner was the experimental object, and five Faro target spheres and three target planes were scanned. 
The coordinates of the spherical centers and planar centers were obtained by fitting the observed values, and the target 
coordinate system was established by SOKKIA 1200 total station.  
The scanning coordinates of the five spherical centers with the measured coordinates through the total station are 
taken as the same-name points to solve the parameters, then the coordinates of the three centers are corrected and 
transformed by using the parameters. Through the difference between the converted coordinates and the original 
coordinates, the mean error of coordinate components and the mean error of point positions are calculated based on 
the Bessel formula. 
 

   (21) 

 
Table 1 Coordinates Sequence of TLS and Total Station (unit: m) 

Classes TLS Total station 
x y z X Y Z 

Sphere1 3.8057 -3.6132 -0.4957 6.5368 10.0224 5.7071 
Sphere2 1.1437 -6.5275 -0.6502 2.7830 11.2521 5.5628 
Sphere3 -0.6325 -3.3331 -0.6429 2.8041 7.5964 5.5640 
Sphere4 -3.0580 -3.7878 -1.0332 0.4659 6.7989 5.1775 
Sphere5 -3.4119 -1.7673 -0.6451 1.1509 4.8632 5.5611 
Plane1 1.6613 -3.5856 -0.5756 4.6813 8.9467 5.6292 
Plane2 0.7593 -1.5648 -0.5447 4.8888 6.7429 5.6555 
Plane3 -1.7224 -0.9954 -0.5689 3.0013 5.0232 5.6314 

 
The following two experimental schemes are employed to implement the prediction of transformation parameters 
and systematic errors. 
Scheme 1, a non-linear least squares transformation algorithm without considering the systematic errors. 
Scheme 2, the new scheme proposed in this paper 
 

Table 2 Parameter Estimation Results 
Parameters Scheme 1 Scheme 2 

/m 4.9946 4.9975 
/m 5.0021 4.9990 
/m 6.1979 6.1991 
  1.0039 

/rad -0.0022 -0.0022 
/rad 0.0016 0.0016 
/rad -1.0572 -1.0656 
/m  0.0060 
  -0.0040 

/rad  -0.0086 
/rad  -0.0018 
/rad  -9.1165E-05 

where  stands for null value. 
 

Table 3 Corrected plane target coordinates (unit: m) 

Plane Scheme 1 Scheme 2 
X Y Z X Y Z 

1 4.6786 8.9422 5.6294 4.6807 8.9443 5.6294 
2 4.8859 6.7389 5.6562 4.8883 6.7412 5.6556 
3 3.0041 5.0238 5.6335 3.0016 5.0205 5.6330 

σ̂ = V TV / (n−1)

ΔX
ΔY
ΔZ
µ ∅

ϕ
ω
κ
m ∅
λ ∅
c ∅
i ∅
δ ∅

∅
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According to the calculated parameters, converting planar coordinates acquired by scanner into total station 
coordinate system. Then, the median error of each coordinate component and the point median errors are calculated 
through the difference, i.e. (dX,  dY,  dZ), between the converted coordinates and the measured coordinates. 
 

Table 4 Coordinate differences (unit: m) 

Plane Scheme 1 Scheme 2 
dX dY dZ dX dY dZ 

1 -0.0027 -0.0045 0.0002 -0.0006 -0.0024 0.0002 
2 -0.0029 -0.0040 0.0007 -0.0005 -0.0017 0.0001 
3 0.0028 -0.0006 0.0021 0.0003 -0.0027 0.0016 

  0.0028 0.0035 0.0013 0.0005 0.0022 0.0009 
     

 
Table 2 shows that the coordinate sequence corrected by system errors is closer to the measured coordinate data, and 
the error of coordinate components and points increases by 82.1%, 37.1%, 30.8% and 45.7%, respectively. 
 
5. CONCLUSION 
 
Based on the similarity transformation model and the working principle of scanner, a self-calibration model of scanner 
system error with 12 parameters is constructed in this paper. The corresponding iterative algorithm is deduced in 
detail by Gauss-Newton method. The validity of the algorithm is verified by the measured data. The results show that 
the point cloud sequences with system error correction is effective and point cloud data can obtain more accurate 
transformation coordinates. The new algorithm takes into account the random errors in the observation data at the 
same time, so it is more rigorous in theory than the existing algorithm. The new algorithm builds a model based on 
the observation principle of scanner. It has reference value in the following point cloud data processing, such as point 
cloud registration, coordinate transformation in geodesy, image matching and so on. In addition, there is a certain 
correlation between the parameters solved by the self-calibration model, so further research is needed to weaken or 
eliminate the correlation between the parameters. 
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