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ABSTRACT: Sentinel-1 with temporally dense and open access data is a candidate platform 

suitable for rice monitoring. The objective of this study was to exploit Sentinel-1 C-band Synthetic 

Aperture Radar (SAR) multitemporal imagery to detect and to map rice cropping areas of Cianjur, 

Indonesia, through (1) learning the backscattering behavior on rice fields; and (2) generating rice 

area maps via several thresholding combinations. Layer manipulation (r.series aggregate 

operation) and RGB false-color composite images were constructed to better visualize the 

separability of rice areas among other types of land utilization. The result shows the averaged 

accuracy of about 82% with the highest accuracy of 85.6% using maximum and minimum 

backscatter coefficient thresholds on VH polarization. We concluded that a simple, 

straightforward approach could be beneficial for a specific task while minimizing the 

computational burden for further broad-scale implementation. 

 

 

1. INTRODUCTION 

 

1.1 Background 

 

Rice has been the main staple food for the majority of people in Indonesia. Estimated rice 

consumption in this country was around 111.58 kg person-1 year-1 (Badan Pusat Statistik, 2018).  

However, rice harvested area and production have declining trends (Panuju et al., 2013; Badan 

Pusat Statistika, 2019) and remain facing further challenges due to growing population trend, 

climate change, and unprecedented situations like the Covid-19 outbreak. With such dire 

complexity, food security continues to be a critical issue that needs to be addressed, and thus 

monitoring farming activity is important for the authority to develop strategies and policies.  

 

Monitoring systems able to provide information related to rice crops require synoptic and timely 

data products. In this role, satellite-borne imaging systems can contribute to both time- and cost- 

effective data acquisition (Kuenzer and Knauer, 2013). To date, they offer a variety of datasets in 

terms of spatial, radiometric, spectral, and temporal resolution. With frequent cloud cover in a 

tropical region like Indonesia, Synthetic Aperture Radar (SAR) data outweigh multispectral 

images as the data source for rice crop monitoring. This is due to its longer wavelength, which is 

less sensitive to cloud cover, and its independency to solar illumination (Kuenzer and Knauer, 

2013; Trisasongko, 2017). 
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One of the limiting factors for utilizing SAR data for crop monitoring is the lack of data 

availability (Clauss et al., 2018). Rapid production cycle as shown in rice farming necessitates 

frequent data acquisition and collection strategies, which are beyond the capability of single-SAR 

systems and therefore urge the implementation of constellation-type SAR systems. Sentinel-1 

constellation – the first satellite of the Copernicus program which was launched in 2014 – attempts 

to overcome this challenge and it has been gaining popularity as the data source for agricultural 

monitoring. Global and temporally dense coverage, free, and open access properties are some of 

the benefits offered to the end-users. This satellite mission generates C-band dual-polarization 

(VV and VH) data with 3-6 days of temporal resolution and 10 m pixel spacing.  

 

Computational complexity comes to its existence when big satellite data processing is available 

for public use. Researchers approach the complexity through implementing machine learning 

models capable to adapt to small sampling data, including random forests and support vector 

machines. In this article, however, a straightforward, computationally inexpensive strategy using 

RGB false-color composite and thresholding to detect and rice map is presented. RGB composite 

technique often used as the first step in SAR data analysis (Refice et al., 2014; Wiesmann et al., 

2001), provides a way to distinguish different land cover based on the stability of the SAR signals. 

Stable signals indicating particular land cover needs to be separated. Thresholding is one of the 

commonly adopted methods in discrimination problems, including the one implemented in 

flooded and non-flooded areas, as well as irrigated rice fields (Henry et al., 2006; Wakabayashi et 

al., 2019). The advantage of thresholding is computational efficiency which makes it beneficial 

for mapping purposes. The detrimental issues include, however, the determination of threshold 

value requiring adaptation to environmental conditions depending on the purpose (Stroppiana et 

al., 2019). 

 

The main purpose of this article is, therefore, two-fold. The first is to investigate the behavior of 

SAR linear backscatters upon growing rice plants, which establishes the base of the identification 

of rice fields through a dense stack SAR dataset. In addition, RGB composting strategies are 

evaluated as an input to the thresholding procedure. 

 

 

2. STUDY AREA AND DATA 

 

2.1 Study Site 

 

The study was located in the district of Ciranjang, Cianjur, West Java, Indonesia (Figure 1). Paddy 

fields are mostly managed by the Provincial Agency of Food Crops and Horticulture. The site is 

situated in a generally flat terrain with a mean elevation of 283 m above sea level. With that 

topographical benefits, the region is foremost known as an agriculture bread-basket. This area 

experiences rainfall of around 3700 mm with an average temperature of 29 – 30oC yearly, 

equipped with existing irrigation networks to assist rice production. Soil type found in the area is 

generally classified into Inceptisols based on USDA’s soil taxonomy system.  In-depth rice area 

detection and mapping were conducted in three districts namely Ciranjang, Haurwangi, and 

Bojongpicung. 
 

      



 
Figure 1 Site map 

 

2.2 Sentinel-1 SAR Data 

 

Each rice field has slightly different rice cultivation scheduling. In the 2019/2020 period, the 

starting date for the first sowing was in early December 2019 until the last harvesting schedule in 

late May 2020. For this reason, a total of fifty-two Sentinel-1 images were downloaded from the 

period between 3 November 2019 and 28 May 2020 (Table 1). These images were downloaded 

from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).  

 

Table 1 Specifications of Sentinel-1 data 

Satellite Sentinel-1A and Sentinel-1B 

Sensor SAR-C 

Product-level Ground Range Detected (GRD) 

Order by Descending 

Date acquisition 3 Nov. 2019 – 27 May 2020 

Frequency (GHz) 5.045 

Revisit frequency at equator (day) 3 – 6 

Pixel spacing 10x10 m 

Image mode Interferometric Wide swath (IW) 

Polarization VV + VH 

Incident angle (degree) 29.1° – 46.0°  

 

2.3 Secondary Data 

 

The rice cultivation schedule and the rice map reference were obtained from the Agency, 

improved with field surveys in January-February 2020. Minor readjusting such as aligning, 

slippers editing, and reprojection were performed. Rice cultivation schedule contains expected 

date of sowing, transplanting, and harvesting periods. The rice map reference was verified by a 

previous study (Munibah et al., 2016) 

 

 

3. METHODOLOGY 

 

The main steps included Sentinel-1 SAR data pre-processing, Sigma nought (σ0) value (dB) 

extraction and descriptive statistics, pixel-wise calculation of maximum, minimum, and difference 
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from data series (r.series), RGB false-color composite construction and threshold determination, 

and accuracy assessment using confusion matrix. 

 

3.1 Sentinel-1 Pre-processing 

 

Sentinel-1 data were pre-processed using SNAP (Sentinel Application Platform) open-source 

software (http://step.esa.int/main/download/) developed by the European Space Agency (ESA). 

The first step of pre-processing was to apply a precise orbit file. Orbit state vectors provided in 

SAR metadata are generally inaccurate and can be refined using precise orbit files. Thermal noise 

removal was then applied to revoke noises from the product. Subsequently, calibration was done 

to convert digital number values of Sentinel-1 images into backscattering coefficient. Radiometric 

correction was necessary to represent radar backscatter. 

 

Due to topographical variations, data were then aligned via Range-Doppler Terrain Correction 

using digital elevation model of the Shuttle Radar Topography Mission (SRTM) 1Sec HGT and 

were projected onto WGS 1984 Universal Transverse Mercator (UTM) zone 48S. Each 

polarization was separated to permit independent investigation of different polarization in 

detecting rice growth. In addition, geographical subsetting was implemented to reduce processing 

time. Stacking or co-registration was done according to each polarization to allow temporal 

processing with chronological order.  

 

Multitemporal speckle filter was then applied employing 7x7 Lee Sigma to suppress speckle noise 

in each SAR image. It is indicated that multitemporal speckle filter would result in smaller noise 

level while preserving spatial patterns (Lee et al., 2009; Lavreniuk et al., 2017). Multitemporal 

speckle filter applies a weighted average across all images in a time series data. The last step was 

conversion to decibel to warrant comparable information to previously published values.  

 

3.2 Sigma Nought Backscatter Value Extraction (Field Level) and Descriptive Statistics 

 

Backscatter temporal data analysis was based on field level. Extraction points were based on the 

centroid of each field, which account for 4743 points. We used ArcGIS to derive centroids and 

extract their coordinates, then collected sigma nought values on all Sentinel-1 imageries using 

SNAP. Sigma nought backscatter coefficient in decibel was plotted according to the days after 

transplanting. The Gaussian models fitting was employed on both polarizations to illustrate 

general trend of rice growth period. 

 

3.3 Layers Manipulation and RGB False-Color Composite Construction 

 

Varying backscatter values during rice growth highlighted the dynamics of rice fields. Using 

r.series toolbox in QGIS with GRASS 3.14, minimum and maximum values of each pixel were 

derived by aggregating operation for both VH and VV series (Figure 2). The difference between 

the minimum and maximum values for both polarizations was derived using raster calculator. As 

a result, each polarization encompassed three layers of maximum, minimum, and the difference 

between maximum and minimum values. 

 

 

Figure 2 Illustration of pixel-wise r.series aggregation 
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False-color RGB composition was produced on each polarization to better visualize crop patterns 

using maximum, minimum, and difference layers. Different color patterns may vary depending 

on how layers were assigned to the RGB channels. 

 

3.4 Threshold Determination and Rice Area Mapping 

 

Rice area thresholds were generated using statistics and histogram toolbox in SNAP. Sample rice 

areas used to obtain threshold values were created according to the reference map. Several 

combinations of threshold were employed: a) maximum and minimum, b) maximum and 

difference, c) minimum and difference, d) maximum, minimum, and difference. 

 

3.5 Accuracy Assessment 

 

Accuracy assessment for classification was conducted using confusion matrix. Totalling 500 

sampling points were employed using a stratified random scheme, distributed proportionally to 

sampling areas. Overall accuracy and its kappa statistics were calculated as a measure of the best 

performing classification scheme. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Backscatter Behavior of Sentinel-1 Data 

 

Studying backscatter temporal characteristics of rice field is vital for the development of future 

studies related to crop monitoring such as mapping and biophysical parameters estimation 

(Kuenzer and Knauer, 2013; Veloso et al., 2017). Figure 3 shows the behavior of backscatter 

coefficients of VH and VV. Phenological cycle of rice cultivars in the site takes up to 120 days 

(Yoshida, 1981). Twenty-day period of germination or seedling prior to transplanting is present 

in the figure to depict fluctuating sigma nought before transplanting. The reason is yet to be 

discovered and this warrants future investigation. Harvesting period is expected to be around 

100th day after transplanting, and can be expanded up to 10 days depending on weather condition 

(raining means that the harvest will be postponed). 

 

Backscatter started to decrease after seedling began and reached the lowest around -18 dB for VH 

and -10 dB for VV in transplanting date due to specular reflection from waterlogged rice fields. 

Thus, according to Choudhury et al. (2007), waterlogged period was crucial in identifying rice 

fields in time series radar data. In this set of data, there was an evidence of double-bounce or 

Bragg’s scattering on both polarizations showed by the amplification or high signal responses at 

the beginning of rice cultivation as shown by Ouchi et al. (2006) Double-bounce effect was more 

prominent in VV polarization than VH. According to Twele et al. (2016) double-bounce effect 

indicated by strong signal return happened because of scattering at the water surface towards 

partially submerged trunks before returning to the sensor. This scattering mechanism preserved 

vertical linear polarization; hence, VV polarization showed higher signal responses than the one 

depicted in VH. 

 

VH backscatter increased throughout rice growth period from the vegetative phase (~40 days after 

transplanting), generative phase (~70 days after), and ripening (~100 days after transplanting). 

Compared to VH, VV backscatter behavior varied greater and data possessed more fluctuation. 

This could happen because at C-band VV polarization is more sensitive towards any surface 

interactions involving less diffuse scattering condition. Meanwhile, VH polarization adapts to 



slight volume scattering which was shown highly correlated with crop condition indicators (Ouchi 

et al., 2006; Twele et al., 2016; Vreugdenhil et al., 2018). Decreasing signal response starting 

before the 50th day after transplanting was probably linked with declining amount of tiller. 

According to Yoshida (1981), tiller number declines after its maximum at around 40th day after 

transplanting until tiller number equals to panicle number at maturity. During ripening phase, 

beginning at around 70th days after transplanting until harvesting period, backscatter signals were 

relatively stable. After harvesting, however, signal increased distinctively due to exposing bare 

soil.

 

 

Figure 3 Varying backscatter coefficient with days after transplanting. Models shown in solid 

lines illustrate general trend of growth phase periods 

 

4.2 Rice Area Detection and Mapping 

 

Figure 4 visualizes each layer after r.series processing. Rice areas started to be visually 

discriminable, specifically on minimum and difference backscatter layers. On the minimum 

backscatter layer (Figure 4(b) and 4(e)), rice areas appear to be the darkest due to the lowest 

backscatter values that happened during flooding period. On the difference backscatter layer 

(Figure 4(c) and 4(f)), rice areas show up lighter due to a greater difference between high and low 

backscatter values throughout rice cultivation period. In order to improve visual separability, these 

layers were then assigned into RGB channels. 

 

Figure 5 shows the RGB composite (red: maximum backscatter, green: minimum backscatter, 

blue: difference backscatter). On rice fields, the maximum backscatter layer represents harvesting 

period or bare soil, meanwhile minimum backscatter values indicate flooding period. The 

difference between the maximum and minimum backscatter coefficients which was assigned to 

the blue channel characterizes irrigated rice cultivation area as elaborated in the previous section. 

In this case, bluish areas in RGB composite correspond well to rice areas in both polarizations. 

RGB composite of VH polarization depicts a better impression in segregating rice areas in term 

of contrast, meanwhile in the case of VV polarization, less sensitivity towards difference of 

harvesting period or bare soil and flooding period is demonstrated. 



 

 

Figure 4 Pixel-wise calculation of maximum (a), minimum (b), and difference (c) on VH 

polarization and maximum (d), minimum (e), and difference (f) on VV polarization 

 

 

 
 

Figure 5 RGB false-color composite of VH polarization (a) and VV polarization (b) 

 

Thresholding of backscattering coefficient to distinguish flood and non-flood areas, including rice 

fields, was successfully performed to the SAR data in various frequencies (Henry et al., 2006; 

Martinis et al., 2015; Ohki et al., 2019; Wakabayashi et al., 2019). In this research, we adopted 

this method to separate rice areas using several layer threshold combinations in search for the best 

performing one. In order to determine the threshold, sigma nought values from rice areas were 

retrieved based on several shapes guided by reference data. Figure 6 shows histograms of VV and 

VH sigma nought backscattering for each layer, while Table 2 presents threshold values using the 

95th percentile (p95). 

 

Thresholds presented in Table 2 applied to both VH and VV sigma nought images containing 

layers of maximum, minimum, and their difference. Several combinations were employed in 

(a)  (b)  

(a) (b) (c) 

(d) (e) (f) 



search for the best performing one in term of overall accuracy. The accuracy of rice and non-rice 

binary images was then be assessed by using confusion matrix in comparison with the reference 

map. Table 3 shows the accuracy assessment of each operation. Based on the result, combinations 

of maximum and minimum, and minimum and difference excelled on both polarizations. 

Generally, thresholding on sigma nought VH polarization image resulted in a better overall 

accuracy in comparison to the one presented by VV polarization. This study found that the best 

thresholding combination for separating rice from non-rice areas was maximum and minimum on 

sigma nought VH polarization. Figure 7 shows the rice map composed using the best-performing 

combination. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6 Histograms of VH maximum (a), minimum (b), and difference (c), and VV maximum 

(d), minimum (e), and difference (f) on rice fields 

 

Table 2 Threshold values 

Polarization Layer Threshold (p95) 

VV Maximum -4.878 

Minimum -13.107 

Difference 11.184 

VH Maximum -11.753 

Minimum -21.501 

Difference 12.906 

 

Table 3 Accuracy of threshold combinations 

Polarization Threshold combination Overall accuracy Kappa 

VV Maximum and minimum 0.828 0.583 

Maximum and difference 0.794 0.569 

Minimum and difference 0.822 0.571 

Maximum, minimum, and difference 0.796 0.478 

VH Maximum and minimum 0.856 0.654 

Maximum and difference 0.778 0.555 

Minimum and difference 0.854 0.650 

Maximum, minimum, and difference 0.822 0.554 

 



 
Figure 7 Rice reference map (a) and the one generated from Sentinel-1 VH polarization 

thresholding on maximum and minimum sigma nought values (b) 

 

 

5. CONCLUSION 

 

In this article, Sentinel-1 SAR data were shown invaluable to map irrigated rice areas using a 

computationally inexpensive yet fairly accurate method. Temporal behavior of SAR 

backscattering coefficient was discovered to be valuable information to differentiate rice area 

from others. Using layer manipulation and RGB false-color composite, visual separability of rice 

area could be comprehended. Thresholding on backscattering coefficient (Henry et al., 2006; 

Martinis et al., 2015; Ohki et al., 2019; Wakabayashi et al., 2019) was adapted to separate rice 

areas using threshold combinations in search for the best performing one. Except in a few cases, 

most time series combination contributed well to the discrimination with suitable accuracy (over 

80%); hence, they open possibility for operational applications. 
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