RICE YIELD MODELLING USING VEGETATION INDICES OF LANDSAT-8 AND RADARSAT-2 SATELLITE IMAGERY
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ABSTRACT: Rice is the most important food crop which is the source of fiber and carbohydrate. In Malaysia rice productivity is steadily increasing and Malaysia’s self-sufficiency level of rice is at 72%. Quantification of rice parameters, such as Vegetation Indices (VIs) and Backscatter Coefficients (σ°) is important in rice yield productivity modelling. Yield modelling is the best tool for rice crop and productivity management. Various VIs and backscatter coefficients are being used to monitor crop growth and to predict and estimate yield before harvesting date. Previous studies shows most analysis use satellite images close to harvesting date of rice crop. The aims of this study is to develop rice yield modelling through on VIs i.e. Normalize Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Leaf Area Index (LAI) and backscatter coefficients (σ°) for 30 plots of rice fields in Sawah Sempadan, Selangor, Malaysia rice granary area. Other purposes of this study are to examine the correlation of the VIs and σ° with the reported yield and study the effectiveness of using Optical and SAR data for rice yield modelling. The first method of this modelling involves data processing of Landsat 8 OLI and Radarsat2 imageries to obtain the VIs of rice crop and the second part present regression analysis of VIs with the reported yield of rice crop. The yield prediction equation gives good correlation (R2) result for LAI which is R2=0.81, compared to NDVI (R2=0.61) and SAVI (R2=0.71) for Landsat 8 dataset. While the analysis of Radarsat-2 gave very low correlation (R2=0.10). In this limited study, it was observed that SAVI gives a better result for modelling yield at the time of the productive stage.

1. INTRODUCTION

1.1 Research Overview
Rice is known as Oryza Sativa L (Inoue et. al, 2014) and it is the most important food crop which is the source of fiber and carbohydrate. In Malaysia, rice productivity is steadily increasing and Malaysia’s self-sufficiency level of rice is at 72%. Rice provides main economic profit for Malaysia's domestic market after pineapple, bananas, and many more. Asian countries responsible for around 90% of the world rice productivity and consumptions, especially in China, India, and Indonesia. According to Radin Firdaus et al., (2012), in Malaysia, rice is mostly planted in Peninsular Malaysia and contributes approximately 85.5% of Malaysia’s total rice productivity. In 2014, Malaysia rice production is about 2.65 million tones with total area of rice cultivation of 689, 732 hectare rice field (MOA, 2014). Because of the limited land, Malaysia does not produce maximum potential of high rice yield (MARDI, 2014), but Malaysian rice varieties contributes higher yields by a lesser amount of compost and fertilizer. 
In order to farm sustainable while still maximizing land productivity and managing input costs of farmers it will need more information on the crops. Toward increasing the rice production in terms of food security in times of climate change and rapid development is a big challenge. Rice’s productivity in the future is unsure as climate change affects water resources and temperature (Tiara et al 2015). Due to climate change, weather conditions and temperatures have slightly affected the presence of various diseases and pest infestation of paddy rice. Rice pests and diseases are negatively affected the rice production in Malaysia. 
The proficiency in satellite-based rice yields forecasting before harvesting remains a significant factor in several aspect for decision making in agricultural as it enables the management to change the farming practices during the next growing season in order to exploit the yield productivity and increase the profit while reducing the cost. The reflectance band from rice canopy and vegetation indices (VIs) derive from optical data along with radar backscatter from SAR data were used to produce the rice yield forecasting models.

1.2 Research Problem
Rice’s growths monitoring, mapping and yield estimation approaches based on traditional method remains used in data gathering, and rice crop information because the data accurateness is uncertainty and due to limitation in local scale, especially regarding to be planted and harvested area. In this paper, we measured the yields across the temporal and spatial scales. The advantage of earth observation by satellites can collect such information of over a broad area, even if the area is difficult to access, periodically, with high consistency, in near real‐time, and cost‐effective, (Shin-ichi, et al., 2014). 
In rice modeling, there is a challenge in estimating rice cultivation area and yield using EO data is to obtain well-timed satellite data, which enables to interpreted rice plant with other crops, and land uses figures. Monitoring rice cropping need multi-temporal data set because the complex rice environment had at least three stages of growing phase in a season. Meaning that, it needed enough images during the rice-growing season. Refer to Shin-ichi (2014), multi temporal of satellite observation, together with international constellation is essential because agriculture needs multiple sources of data integration. With only one sensor or satellite, it does not meet the analysis and application requirement. A precise crop yield forecasting model would be able to support managers or farmers to make the best decisions in farming practices.

1.3 Objective
The aim of this study is to develop a prediction model of rice yield using three different vegetation indices; NDVI, LAI, and SAVI from Landsat 8 sensor and radar backscatter coefficient from Radarat-2 at the stage of productive phase. We also examine the correlation of vegetation indices with reported yield to study the effectiveness of using SAR data for rice yield forecasting model.

2. MATERIALS AND METHODOLOGIES

2.1 Study Area
The study area was in Sawah Sempadan C2 Block of Tanjong Karang (Figure 1 (a) and (b)) rice granary area under monitoring of Integrated Agricultural Development Area (IADA), Barat Laut Kuala Selangor. IADA Barat Laut Selangor was under Ministry of Agriculture and Agro-Based Industry Malaysia, and it is the third major rice production in Malaysia after MADA in Kedah and KADA in Kelantan. Rice’s cultivation one of the significant sectors of Malaysia's economic source after oil palm and rubber that contribute about 12% to the domestic GDP. According to Che Omar et al, (2019), rice harvested area remained relatively stagnant compare to oil palm harvested area that increased over the years. This sector offered employment opportunities to the public.
 In 2016, IADA Barat Laut Selangor generally produced 222,033 MT with 5.8 MT/Ha (hectare), which is the rice production is above national average of 4.0 MT/Ha (Che Omar et al., 2019). The area of Sawah Sempadan covering 2303km2 with the population density of 1202 people. Rice’s cultivation in the region is depended on the irrigation system which consists of two main rice cropping seasons as Sawah Sempadan started in July to November for the first season and Jannuary to May for the second season. The rice planting will follow the irrigation schedule to make sure all the rice planting area in Tanjong Karang region will get sufficient water supply for paddy growth.
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(a)                                                                      (b)
Figure 1: Location of the study site at different scene of (a) Landsat 8 OLI imagery and (b) RADARSAT-2 imagery.

2.2 Satellite Data Description
Table 1: Data specification and description of Landsat 8 OLI and RADARSAT-2
	Specification
	Description

	Operating Sensor
	Operational Land Imager (OLI)

	Wavelengths (Multispectral)
	0.43-1.38 

	Number of Bands
	9 

	Resolutions
	30m (Band 1-7) and 15m (Band 9) 

	Datum
	WGS 84

	Map Projections
	UTM Zone 47 N

	WRS-2 Path /Row
	127/58

	Corner LL Lat/Long Product
	1.83972/100.32521

	Corner LR Lat/Long Product
	1.83700/102.37877 

	Corner UL Lat/Long Product
	3.94259/100.33575 

	Corner UR Lat/Long Product
	3.93676/100.33330

	Actual Size of Scene 
	170km x 183km

	Date Acquired
	2015-09-19

	Pan-sharpening Used
	Gram-Schmid

	Operating Sensor
	RADARSAT-2

	Beam Mode
	Wide Fine (W0F1)

	Product
	SGX, SGF & SLC

	Nominal Pixel Spacing (m)
	3.13 x 3.13

	Spatial Resolution (m)
	12.5

	Nominal Scene Size (km)
	150 x 150

	Nominal Incidence Angle Range (0)
	200 to 450

	No. Looks
	1 x 1

	Band
	C-band

	Mode
	Ascending

	Polarization
	VV

	Date Acquired
	2015-05-09, 2015-06-02, and 2015-08-13



2.3 Data Processing
Landsat 8 OLI data processing was performed using ENVI and ArcGIS software. While, RADARSAT-2 data processing was performed using open-source software, Sentinel Application Platform (SNAP) that was developed by European Space Agency (ESA) for earth observation. The flow of data processing is shown as in Figure 2 below; 
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Figure 2: Landsat-8 and RADARSAT-2 data processing outline.

2.3.1 Radar Backscatter Coefficient
Backscatter coefficient (𝜎°) was derived from RADARSAT-2 C-band, vertical transmit and vertical receive (VV) polarization using equations below;



Where; σ0 is the sigma naught or backscattering coefficient (dB). DN is the digital number (or raw pixel value) of RADARSAT-2 image, Ao and Aj are the automatic gain control factor, and Ij is the local incidence angle of each pixel across the range direction.
                                        
2.3.2 Vegetation Indices
Three VIs were intended from different forms arithmetical ratios concerning red (r) and infrared bands (ir); Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Leaf Area Index (LAI). All the VIs were calculated using equations as follows:


NDVI was introduce by Rouse et al. in 1973. Where  the reflectance of infrared band (band 4 and band 5) and  is the red band reflectance (band 3 and band 4).
						 		
SAVI was introduce by Huete (1998) to minimize soil brightness and it was set to 0.5 for OLI.  Where L is a constant that is a surrogate for LAI as the optimal adjustment factor are; 	
L = 1 for the low vegetation density (low dense such crop vegetation; rice)

LAI= [Leaf area (m2)/Ground cover (m2)] 							         (4)	    			
LAI is a measurement of canopy growth at a specified time. Referring to Ahmad, et al. (2015), direct measurement of LAI involved the destructive and non-destructive methods. Destructive method requires leaf sample collection for further laboratories’ analysis, and this method would give high accuracy. Non-destructive method requires field measurement of leave (width and length). According to Bange et al. (2000) field linear dimension of leave is a well-established method and had been widely used to measure LAI non-destructively. Chanda and Singh (2002), use equation a=b*Max length*width for linear measurement of leave where b is a coefficient. Although, Quarrie and Jones use equation, LA= Length*Breadth*0.75 for wheat crop (Aldesuquy et al., 2014).  
 	LAI also can be derived from satellite imagery either optical or SAR sensor as indirect measurement. According to Cohen et al. also supported in using VIs from satellite imagery through regression analyses LAI estimation. Meyer et al. (2019), use Sentinel-2 MSI and Landsat-8 OLI in estimating LAI. According to Blinn et al.  (2019), ground LAI was estimated based on minimum and maximum LAI and modeled with Landsat-derived VIs from surface reflectance, simple ratio (SR) and Normalized Difference Moisture Index (NDMI).

2.4 Yield Prediction Algorithm
ML is a significant algorithm for crop yield prediction to help managers and farmers for decision support in farming practices of the growing season for the rice crops (Thomas et al, 2020). Numerous ML algorithms have been used in modeling crop yield. Based on the previous and current work, the Neural Network and Regression algorithm were employed mostly to predict the grain yield (Aditya Shastry et al. 2017; Thomas et al, 2020). This study will apply Single Linear Regression (SLR) and Multi Linear Regression (MLR) model to generate yield modeling for rice crop based on VIs from optical data and σ° from SAR data. 

3. RESULT AND ANALYSIS

3.1 Single Linear Regression (SLR)
Generated SLR formula and correlation coefficient of rice yield, as a dependent variable, between VIs (NDVI, SAVI and LAI) from Landsat-8 OLI as independent variables, it is shown that the appropriate mathematical linear were uniformed as shown in Figure 3: (a), (b), and (c). According to regression equations (Table 2), there is a typical relationship between rice yield either with NDVI, SAVI and LAI with the R2= 0.61; 0.71; and 0.81 except with the case of 𝜎° model from single RADARSAT-2 data shows the lowest determination coefficient or the R2 values which is 0.31 and it consider as very weak as shown in Figure 3(d). LAI model approximately R2 = 0.81 representing high correlation with the rice yield which means the value considered strong effect size because the R2 value is above 0.7. This result indicates LAI and rice yield have good correlation, and as a result the retrieval equations performed well as shown in Figure 3(c). According to Blinn, et al. 2019, Landsat OLI generates maximum accuracy LAI model for a specified time period with the simple ratio (SR) vegetation index.

3.2 Multi Linear Regression (MLR)
Multi Linear Regression (MLR) model and determination of coefficient were executed based on the combination of yield and radar backscatter coefficients values (𝜎°) that was obtained from RADARSAT-2 of different date which is the rice was in late maturity and ripening stages. Prediction accuracy of regarding MLR formula and the R2 for 𝜎° (Table 2), was enhanced to compare to SLR formula which R2 is 0.62 and 0.13 respectively. The efficiency increase when adding the more independent variables to the prediction model. The coefficients of 𝜎° model strangely have the low amount of explained variation. This could be due to the quality of the data, the selection of ML or the parameter input. SAR data was analysed by considering two main aspects, which is noise equivalent sigma zero (NESZ) and the radiometric resolution (Fiuezal, et al. 2017). 
The signal noise ratio (SNR) determine the quality of SAR data. Noise is in fact error in the rendering of the imaged scene, and is due to a variety of phenomena from a variety of sources (Armin, 2006). The range of 𝜎°VV C-band is from -10dB to -6dB after processing and extracting. This is quite low compare to another polarization. Agreeing to Brisco e al. (2008), the VV polarisation comparatively not good as HH, due to low 𝜎°, thus decreasing the sensitivity to soil moisture and this enlarged the sensitivity to microscale surface roughness due to low SNR. The lower value of 𝜎°, the lower SNR. According to Johansson et al. (2018) variations in thickness and surface roughness strongly affect the backscatter signature. Consequently, the 𝜎° of rice area should be higher due to the variations in thickness and surface roughness of the rice canopy surface. Single data of co-polarization (VV) is unsuitable for vegetation application but perfect for ocean applications. This theory was verified by Toure´ et al. (1994) in the sensitivity analysis using theoretical surface scattering models. 

Table 2: Regression models for rice yield prediction using single optical and multi-temporal SAR
	Algorithm/Forecaster 
	Model
	R2

	Single Linear Regression
	
	

	NDVI
	Y=69934*NDVI-54177
	0.61

	SAVI
	Y=53340*SAVI-62983
	0.71

	LAI
	Y=5427.4*LAI-37532
	0.81

	𝜎°vv
	Y=-500.67*𝜎°Re+1905.1
	0.13

	Multi Linear Regression
	
	

	𝜎°vv
	Y= 1013.4025 *𝜎°LM + (-321.735)*𝜎°Ri +11786.9378
	0.62


𝜎°: Backscatter Coefficients	
R2: Determination Coefficients
Re: Reproductive
LM: Late Maturity 
Ri: Ripening

  
(a)                                                                        (b)
  
(c)                                                                          (d)
Figure 3(a-d): Relationship between VIs and Backscatter Coefficients (𝜎°) with reported yield.

4. CONCLUSION

Through the first analysis, it demonstrates that the yield modeling from Landsat-derived VIs (LAI) shows the best performance with 0.81 determination coefficient using SLR model. This method offers the advantage of using open source of satellite image from Landsat imager, while presenting good results compare with other complex techniques. In contrast, the radar backscatter produce very weak results with single data but the accuracy improve (R2=0.62) when combining two variables (𝜎°VV C-band from multi dates). 
 For satellite SAR approach, it is needs all the imageries acquired all over the entire rice crop growth to enhance the accuracy of the prediction model. However, due to weakness of VV polarization, it is recommended to use HH polarization or HV to reduce the effect of SNR. By combining the optical and SAR data together with Vis or other variables (crop, soil, weather and nutrient parameter), it potentially can produce very high accuracy of rice yield modeling. This finding demonstrates the advantage of using satellite data in modeling the rice yield with simple method and the poor interest of data acquisition as the independent variables for model development. Upcoming work will be expending more high-resolution satellite data and accumulate more variables to gain the accuracy assessment. 
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Relationship between LAI and Reported Yield
Yield	
7.7203999999999997	7.9451999999999998	8.1485999999999983	8.0386000000000006	8.226700000000001	8.1820000000000004	8.2826000000000004	8.2800000000000011	8.4031000000000002	8.3428000000000004	8.3406000000000002	8.2266000000000012	8.2945000000000011	8.3078000000000003	8.3021000000000047	8.2173999999999996	8.266	8.2321000000000009	8.2881999999999998	8.3241000000000014	8.1760000000000002	7.9897000000000133	7.5023	5020	5640	5990	5640	7400	7330	7370	7700	7890	8000	8000	7700	7300	7320	8380	7500	7000	7180	5850	8200	6800	4900	3200	LAI

Reported Yield



Relationship between Radar Backscatter and Yield
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