FLUS MODEL APPLICATION FOR LAND-USE SIMULATION OF INDONESIA'S MEGACITY REGION
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ABSTRACT: The population of Indonesia is unevenly distributed, being concentrated in the urban areas of a few cities, especially in Jakarta. Jakarta became a megacity in 2013 when it accumulated a population of more than 10 million people and became the center of economic activities in an emerging market. Since 1960, Jakarta has always ranked among the top 30 urban agglomerations in the United Nations records. The present study aims to simulate the land-use pattern in a megacity region of Indonesia, namely the Greater Jakarta Area. This study used FLUS Model using the artificial neural network (ANN) to examine the relationship between the driving factors and the land-use changes. The RMSE values indicate that the probability of occurrence map produced is still within an acceptable range. Land use data for 2009, 2011, 2014, 2015, 2016, 2017, and 2018 were used for the validation process based on the best Kappa statistic and FoM values. The validation results indicate that the FLUS model is capable of reproducing the spatial dynamics of multiple LUCC with reassuring accuracy. The cellular automata approach is conducted for the allocation process for each land use category. This study used ArcGIS® Desktop 10.2 for Windows® for initial data processing, includes the process of setting spatial references in the WGS 84/UTM zone 48S projected coordinates system, process rasterization, and data visualization. FLUS Model simulation is performed using GeoSOS-FLUS Version 2.3 software. 

1. INTRODUCTION

Urban growth encourages the growth of cities, where people live and carry out various economic and social activities. This has led to changes in land use characteristics from a village or settlement to a town or city (Yang, 2011). Jakarta is one of the biggest urban metropolitan communities in Asia. Jakarta attracts people's attention to live and work in Jakarta because of its very high economic activity. Jakarta's population increased by 269 people per day from 2015 to 2017, encouraging land use for residential and commercial areas in the area around Jakarta, including the cities of Bogor, Depok, Tangerang, Bekasi, known as the Jakarta Greater Area (Fitriyanto et al., 2019).

Land use and/or land cover changes in urban areas, especially transforming cropland and forest land for urban uses, is one of the most pressing forms of global environmental changes (T. Liu & Yang, 2015). As urban growth continues, more land will be allocated for the creation of goods and enterprises, as well as more housing areas as it is fundamental for the individuals who wish to move into the city (Thapa & Murayama, 2010).  For example, China has experienced rapid urbanization over the past decades, causing large amounts of agricultural land use areas being converted into built-up or urban land-use areas, exerted extraordinary effects on the environment due to urbanization (Zhang et al., 2011). Land-use changes from green areas to newly-built structures bring about change on the surface of the earth, causing environmental changes such as sunlight absorption and airflow (Kardinal Jusuf et al., 2007). Human activities have altered land surface enormously by transforming natural land to other use, satisfying the expanding interest for food, wood, fuel, minerals, and numerous different needs. Such changes considerably weaken the ecosystem from functioning and provide services. The development of urban land will naturally escalate competitiveness with other land uses. Additionally, the urban land extension will also influence the hydrologic and nutrient cycling processes, further weakening the delivery of ecosystem services (Chen et al., 2019). 

Land use planning aims to control land use while meeting multiple interests. It is supported by land evaluation, which is a process of assessing a potential land for specific uses. The results from the land evaluation are described in the form of maps as a basis for land use layout planning  (Asrida, 2016). Monitoring land changes accordingly can help provide significant information for regional management and planning, as well as understanding the socioeconomic and biophysical processes, which is shaping the lands in urban areas (T. Liu & Yang, 2015). Land cover is described as land which can be observed on the surface of the earth, while land use is defined as how the land is used by humans (Jansen & Di Gregorio, 2003). There are several categories of land use, namely water area, built-up area, forestland, mines/quarry, unused land, and cultivated land. The water area consists of streams and canals, lakes, reservoirs, bay, and estuaries (LaGro, 2004). The built-up area includes commercial and man-made structures, like residential areas, roads, and railway lines. Forestland is made up of forest covers. Mines or quarry are mining areas (Manandhar et al., 2009). Unused land is barren lands and cultivated land are farms and other agricultural gardens (Parihar et al., 2013).

Urban Growth and land-use change is a dynamic spatial-temporal cycle, which has received the attention of many organizers, conservationists, biologists, economists, and resource managers (Dietzel & Clarke, 2006). Modeling the driving factors, as the influence factors of urban growth, is a challenging process, considering that each region has its own characteristics. Driving factors are typically related to one another, making it possible that one factor can influence another directly or indirectly across the urban growth process (Thapa & Murayama, 2010). By integrating driving factors into land cover data, city planners can commence strategic visions to intervene and manage modifications within urban areas (Davidson et al., 2019). The present study aims to simulate the land-use pattern in a megacity region of Indonesia, namely the Greater Jakarta Area. This study used FLUS Model using the artificial neural network (ANN) to examine the relationship between the driving factors and the land-use changes.  More specifically, this study has a presumption that there are significant land-use changes in the urban area. This study only used historical land-use change data to determine future predictions by simulating the land-use change performed using GeoSOS-FLUS. Using an Artificial Neural Network (ANN) based probability of occurrence estimation to approximate non-linear functions that are dependent on independent variables  (X. Liu et al., 2017) and Cellular Automation (CA) elaborate self-adaptive inertia and competition mechanism to address the interaction between urban and non-urban lands (Liang, Liu, Li, Chen, et al., 2018). 

2. LITERATURE REVIEW

2.1 Urban Development 
Urban development is the result of interactions, choices, and actions taken by multiple agents such as households, businesses, developers, and governments. Households and businesses interact within proximity to their locations. Developers’ actions affect the vicinity that their current projects are developing. While governments’ policies, regulations, and services affect the state or community it governs. These actions affect ecosystem structures and functions through the land transformation, utilization of resources, and the emissions and waste that it generates. Environmental changes will eventually affect the wellbeing of individuals living in the vicinity, causing a change in preferences and the decisions they make (Alberti & Waddell, 2000).

Land use transformation can be caused by economic growth and urbanization. Lifestyles of an urbanized society create a wide range of market demands, causing agricultural lands to be transformed into industrial facilities, transportation infrastructure, residential and recreational lands, depending on their needs. Urban settlements are characterized by being in central locations, having high population densities, and strong economies, which can affect land value and rent significantly and with time, will lead to urban-rural differential attracting conversions of land from rural to urban uses (Xie et al., 2007).

2.2 Land-Use Simulation
Spatiotemporal land use and land cover change (LUCC) simulations are a cost-effective tool for analyzing alternative future landscape dynamics related to socio-economic and natural environmental driving factors (X. Liu et al., 2017). Decision-makers can utilize simulations in the early stages of planning, as simulations provide valuable information regarding influences of different development policies or planning scenarios, preventing poor urban development (Liang, Liu, Li, Chen, et al., 2018). Artificial neural networks (ANN) are another tool used to simulate land-use change by estimating the probability of occurrence. ANN are machine learning methods commonly used to approximate the nonlinear and complex relationships between land use patterns and their driving factors (Liang, Liu, Li, Zhao, et al., 2018). ANN consists of layers and neurons, allowing it to have learning and recall abilities, especially for non-linear mapping. ANN has seen many successes when used for analyzing and modeling geography problems (Li & Yeh, 2002).

Cellular automata (CA) are commonly used to simulate spatial evolution by generating rich patterns that can effectively represent nonlinear spatially stochastic LUCC change. In other words, CA estimates how the land represented by a pixel interacts with its surrounding effects and transition rules (X. Liu et al., 2017). CA models have become popular for urban simulation because they provide a useful tool for understanding evolutionary and complex systems such as cities. Land development takes a lot of time in which development in the past affects the future through interactions among the lands. In CA simulation, the outcome at the previous iteration highly influences the outcome of the next iteration, leading to complex patterns further on. Transition rules also affect features that can unexpectedly emerge during the simulation (Li & Yeh, 2002). By implementing an ANN-CA based model, it is possible to simulate multiple land-use changes. The output layer from ANN determines the transition probabilities of multiple lands uses. The parameter required for CA simulation is automatically determined by the training procedure of ANN. This model can deal with the complex relationships between variables because of ANN’s non-linear mapping abilities (Li & Yeh, 2002).

3. DATA SOURCES AND METHODS

Data 
Figure 1 and Figure 2 show the spatial dataset used to simulate the LUCC of the Jakarta Greater Area consists of area boundaries, road networks, and DEM data are taken from Badan Informasi Geospatial (https://tanahair.indonesia.go.id/portal-web), public facilities such as school districts, hospitals, and green spaces are taken from Open Street Map (https://openstreetmap.id/en/). 






Figure 1. Jakarta Greater Area land use with points of interest, railway, and roads


(i)	(ii)	(iii)
Figure 2. (i) DEM (ii) Slope (iii) Aspect
 
Methods  

This research aims to evaluate the FLUS model application for land-use simulation of Indonesia's megacity region. Figure 3 shows the 6 stages in this research, composed of spatial data collection (e.g. area boundaries, driving factors, DEM, slope, and aspect), layer conversion into rasters using ArcGIS, Flus model simulations using ANN-based probability of occurrence estimation along with Self-adaptive inertia and competition mechanism CA, precision validation, and finally land-use allocation analysis.
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Figure 3. Research Stages



4. RESULTS AND DISCUSSION

Rasterization
To simulate LUCC using GeoSOS FLUS, firstly, all the raster data are converted into the same projected coordinate system and size, which is WGS 84 UTM 48s and 100m x 100m respectively. Area of boundaries from 2009, 2014, 2015, 2016, 2017, and 2018 are first clipped to match the study area using tools from ArcMap. The clipped maps are reclassified to a specific classification, namely,  water area, unused land, cultivated land, build-up area, forestland, and mining area. Driving factors such as points of interest (e.g. hospital, schools, green spaces, and government buildings), roads, and railways will be filtered accordingly, clipped, and changed into rasters. Figure 4 represents the raster used in this paper.


Figure 4. Rasters used in this paper: (i) 2018 land use (ii) 2017 land use  (iii) 2016 land use (iv) 2015 land use (v) 2014 land use (vi) 2009 land use (vii) points of interest (viii) railway (ix) roads (x) DEM (xi) slope (xii) aspect

ANN-based probability of occurrence estimation
Once all the rasters are in the same projected coordinate system and size, the ANN-based probability of occurrence estimation is performed. The probability map is used for the Self-adaptive inertia and competition mechanism CA process. With a sampling rate of 0.5%, all rasters from 2009, 2014, 2015, 2016, 2017, and 2018 will be tested with all the driving factors, DEM, slope, and aspect as its driving data. The results of the ANN-based estimation shows the Root Mean Square Error (RMSE) value of each year which can be seen in Table 1. 



Table 1. RMSE value of each year
	Year
	RMSE Value

	2009
	0.254

	2014
	0.226

	2015
	0.229

	2016
	0.224

	2017
	0.229

	2018
	0.234



RMSE measures errors based on the difference between two corresponding values, and is defined by (Hadi Prayitno, 2007):

	(1)

For i ≠ d
Where:
Tid-o	= Observation data
Tid-e	= Estimation data
N 	= Total data

The smaller an RMSE value, the closer predicted and observed values are, and vice versa (Hadi Prayitno, 2007). The RMSE values indicate that the probability of occurrence map produced is still within an acceptable range, allowing the simulation process to be carried on. 

Self-adaptive inertia and competition mechanism CA
Self-adaptive inertia and competition mechanism CA will simulate the LUCC at Jakarta Greater Area. The Comparison is conducted in a 4-year minimum gap, to gain significant changes. A maximum number of iterations are set to 300, future pixel number is filled with the 4-year counterpart of each of the respective land use classification. The simulation shows the result of how the land-use changes into its 4-year counterpart according to the probability data acquired from ANN-based probability of occurrence estimation data.

Precision validation
Precision validation will be performed to all the simulation results by comparing the start, ground, with the simulation results. Start represents the base year, the ground represents the 4-year minimum gap, and simulation results are the results acquired from the self-adaptive inertia and competition mechanism CA simulation. GeoSOS FLUS offers validation results using Figure of Merit (FoM) to indicate cell-level agreement and pattern-level similarity (Liang, Liu, Li, Zhao, et al., 2018). FoM is formulated as follows:

 	(2)

where A is the area representing the error due to observed change that is predicted as persistence, B represents the area corrected due to observed change that is predicted as change, C represents the area of error due to the observed change that is predicted as a change in the wrong category and D represents the area of error due to observed persistence that is predicted as change (Liang, Liu, Li, Zhao, et al., 2018). Table 2. shows the validation results of each period. Low FoM values below 2.5% suggest a good fit. FoM values within the range of 2.5% to 3.5% are still acceptable, as they only have minor flaws such as unfit tails. Larger FoM values above 10% signify poor statistics and should be avoided (Balian & Eddy, 1977).  Kappa coefficient can be negative, but its value is 0.0 when agreement happens only at the chance expected level, and its value can be 1.0 when the agreement is perfect. A high value for kappa does not necessarily imply that measurement was as intended (Thompson & Walter, 1988).

Table 2. Validation results
	Year
	Figure of Merit
	Kappa Coefficient 

	2009 – 2014
	0.028
	0.778

	2009 – 2015
	0.064
	1

	2009 – 2016
	0.066
	-0.031

	2009 – 2017
	0.005
	-0.067

	2009 – 2018
	0.006
	0.135

	2014 – 2018
	0.031
	0.142



From these results, future land use prediction can be simulated using the year 2009 and 2014 due to having a low FoM value of 2.8% as well as a high kappa coefficient of 77.8%. The validation results indicate that the FLUS model is capable of reproducing the spatial dynamics of multiple LUCC with reassuring accuracy (X. Liu et al., 2017).

5. CONCLUSION

Many city planners can benefit from using land-use simulation as they are a cost-effective way to analyze future landscape dynamics relative to the driving factors. This is a preliminary study. This study shows that by comparing the land-use change of two different years with a minimum of a 4-year gap, those years can be used to predict future land-use changes based on their FoM values, where the smaller the value the better the results. This study considered on negative influence on ecosystem services in general, resulting from urban activities and infrastructure development. More specifically, this study has a presumption that there are significant land-use changes in the urban area. This study only used historical land-use change data to determine future predictions of land area per category. Further research is needed to consider social, economic, and climate factors to gain insight into more complex interactions. The application of several scenarios is necessary to produce more information for policymakers.
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