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ABSTRACT: Scan matching in simultaneous localization and mapping (SLAM) has several 
technical issues, such as error accumulation, high processing cost in point cloud matching and 
optimization, and position loss problems after scan matching failures. Error adjustment processing 
can improve the performance of SLAM with loop closure and global optimization approach. 
However, measurement path plans and higher processing cost are required for the error adjustment 
and global optimization. In contrast, global navigation satellite system (GNSS) positioning can 
simplify the scan matching. Thus, we propose scan matching for multilayer LiDAR data registration 
with RTK-GNSS positioning and geometric constraints. Through experiments on point cloud 
acquisition with multilayer LiDAR and a single-frequency RTK-GNSS positioning device, we 
verify that our methodology can integrate point clouds acquired in mobile mapping without an 
inertial measurement unit. We also confirm that our methodology can avoid error accumulation 
problems in conventional SLAM processing. 

 
1. INTRODUCTION 

 
The mobile three-dimensional (3D) measurement system is a measurement device used to acquire 
point clouds over a wide area with image acquisition and laser scanning while moving. Mobile 3D 
measurement systems can be mainly classified into camera-based systems and LiDAR-based 
systems. In this research, we focus on LiDAR-based systems. 
Point cloud acquisition with a mobile 3D measurement system is processed with two steps. First, 
distance measurement results are acquired with LiDAR. Next, local point clouds are obtained with 
scanning angles on the scanner coordinates. Then, global point clouds are obtained based on the 
real-world coordinates of the LiDAR position and rotation data. The LiDAR position data are 
generally acquired with a total station-based position tracker or kinematic global navigation satellite 
system (GNSS) positioning device mounted on a mobile 3D measurement system. The rotation data 
of LiDAR are generally acquired with an inertial measurement unit (IMU) or multiple GNSS 
antennas. The mobile 3D measurement system in surveying fields consists of a GNSS positioning 
device, IMUs, and LiDAR. Moreover, wheel odometry is generally added to mobile 3D 
measurement systems to support IMUs for position data acquisition in poor satellite-based 
positioning environments. The absolute accuracy of point clouds acquired with mobile 3D 
measurement systems greatly depends on the performance of positioning devices. Moreover, the 
relative measurement accuracy, such as shape representation accuracy, of acquired point clouds 
greatly depends on the performance of IMUs. In outdoor environments, kinematic GNSS 
positioning using a multifrequency GNSS receiver is applied to achieve high absolute measurement 
accuracy. In recent years, low-cost and high-precision single-frequency RTK-GNSS positioning is 
also available for use in mobile 3D measurement systems. However, although IMUs have improved 
the price and size of MEMS technology, high-priced IMUs are still required for mobile mapping 
systems for high relative measurement accuracy. 
Mobile 3D measurement systems for surveying are similar to mobile 3D measurement systems for 
autonomous mobile robots. Simultaneous localization and mapping (SLAM) is a popular approach 



for mobile 3D measurement systems for autonomous mobile robots. The SLAM is an algorithm 
used to simultaneously estimate self-position and maps. The SLAM is roughly classified into real-
time SLAM using a Bayesian filter, real-time SLAM with point cloud alignment and optimization 
(scan matching), and offline SLAM using graphs (graph-based SLAM). The SLAM using a 
Bayesian filter is a methodology used to fuse prior probabilities and likelihoods stochastically. 
Extended Kalman filter (EKF) SLAM (Weingarten et al., 2005) and Rao-Blackwellized particle 
filter (RBPF) SLAM (Murphy, 2000) are popular algorithms used in this methodology. The scan 
matching consists of two methodologies. In the first methodology, initial positions are used. The 
iterative closest point (ICP) algorithm (Chen et al., 1992) and normal distributions transform (NDT) 
algorithm (Biber et al., 2003) are popular algorithms used in this methodology. In the second 
methodology, global optimization without initial positions is applied. The globally optimal ICP 
(Go-ICP) algorithm (Yang et al., 2016) is a popular algorithm used in this methodology.  
The graph-based SLAM is a methodology used to optimize a graph of self-position and landmark 
relationships. The graph-based SLAM consists of the front end (sensor-dependent processing) and 
back end (sensor-independent processing). The front end holds sequential SLAM processing 
including self-position estimation, loop closure detection, and graph generation. The back end holds 
graph optimization with graph solvers. Open-source SLAM includes gmapping (RBPF-SLAM) 
(Grisetti et al., 2007), Hector SLAM (EKF and scan matching using 2D cells) (Kohlbreche et al., 
2011), and LiDAR odometry and mapping (LOAM) (point-to-line or point-to-face matching) 
(Zhang et al., 2014), Velodyne SLAM (point-surface matching and distortion rectification) 
(Moosmann et al., 2011), and Google Cartographer (sequential SLAM by cell-based scan matching 
and graph-based batch SLAM processing) (Nüchter et al, 2017). 
In this study, we focus on scan matching. Scan matching is an approach used to estimate a rotation 
matrix and translation vector as the relative rotation and translation of reference point clouds. The 
main part of scan matching is point cloud alignment between base point clouds and reference point 
clouds. The rotation matrix and translation vector are estimated with singular value decomposition 
(SVD) using corresponding points obtained in point cloud matching. The SVD holds the product of 
an M-by-N orthogonal matrix, N-by-M diagonal matrix, and N-by-N orthogonal matrix. The SVD 
is often applied for rotation and translation estimation with an ICP algorithm in point cloud 
matching. Point cloud matching with an ICP algorithm is a methodology used to estimate a rotation 
matrix and translation vector with outlier rejection by robust estimation such as the random sample 
consensus (RANSAC). The estimation consists of minimizing of the Euclidean distance between 
each nearest point among the base and reference data with iterative calculation. However, when 
sparse point clouds are input, point cloud matching with an ICP algorithm cannot easily determine 
precise corresponding points because of insufficient point cloud density. Therefore, the matching 
of the sparse point cloud should be shape-based. Methodologies for higher speed point cloud 
matching include an input point cloud reduction with uniform sampling or weighted sampling and 
point cloud matching with an NDT algorithm. Point cloud matching with an NDT algorithm can 
achieve a higher processing speed than that with an ICP algorithm. The point cloud matching with 
an NDT algorithm can is processed through the following steps. First, point clouds are assigned into 
a cell space, such as 2D cell space or 3D voxel space. Next, the average coordinate value is assigned 
to each cell. Then, the covariance matrix is obtained from the average coordinate values. Afterward, 
point clouds are represented with a normal distribution using the average coordinate values and the 
covariance matrix. Finally, matched point clouds are obtained by minimizing the Mahalanobis 
distance to the normal distribution of the corresponding cell. 
Typical issues in scan matching include error accumulation in position estimation, high calculation 
cost of point cloud matching and optimization, and self-position loss in position estimation failures. 
In SLAM, error adjustment is generally applied for accumulated errors in position estimation based 
on a loop closure. The loop closure approach is an error adjustment methodology in SLAM using 
the same features at the start and end points of the measurement route. Moreover, in SLAM in 
indoor environments, an error adjustment can be applied with geometric rectification based on the 
Manhattan World Assumption (a geometric constraint with artificial objects composed of vertical, 
horizontal, and parallel planes) after scan matching. 
The technical issue in scan matching can be simplified from 6 degrees of freedom (DoF) with 



rotation angles and position data to 3 DoF with rotation angle when high-precision positioning such 
as RTK-GNSS is applied. The simplification of scan matching can avoid technical issues in scan 
matching such as the error accumulation in position estimation. Moreover, the simplification of 
scan matching can omit the use of IMUs in mobile 3D measurement systems. However, the 
technical issue of 3 DoF is not easily solved with a combination of positioning data with 2D LiDAR 
(LiDAR with a single scanning line). 
Therefore, we focus on the use of RTK-GNSS positioning and multilayer LiDAR (LiDAR with 
many scan scanning lines). We aim to develop a registration methodology for point clouds acquired 
on a road with mobile 3D measurement systems. We also propose a scan matching using geometric 
constraints that extend the Manhattan World Assumption to road spaces. Through experiments on 
mobile mapping using multilayer LiDAR mounted on a UAV and cart, we verify that point clouds 
can be integrated without IMUs. We also verify that our proposed methodology can avoid the error 
accumulation issue in SLAM. 
 
2. METHODOLOGY 

 
Multilayer LiDAR generally holds a wide-angle and high-angular resolution in the horizontal 
direction (scanning direction) and narrow-angle and low-angular resolution in the vertical direction 
(between scan rows). When multilayer LiDAR is horizontally mounted onto a mobile platform for 
road surface measurement, the horizontal cross sections and wide road surface areas can be 
sufficiently measured. Moreover, the yaw and pitch angles in SLAM processing can be easily 
estimated. However, compared with the point cloud density in the horizontal cross-sectional 
direction, that in the vertical direction is sparse. Thus, roll angle estimation becomes difficult because 
the cross-sectional shape is not clear.  
In contrast, when multilayer LiDAR is vertically mounted on a mobile platform for road surface 
measurement, the cross sections become clear, and roll angle estimation in SLAM can be easily 
estimated. However, pitch and yaw angle estimations become difficult, because the measurement 
range of longitudinal sections direction becomes extremely narrow, and shapes in the horizontal 
cross section direction and road surfaces becomes poor. 
Consequently, conventional approaches use two multilayer LiDARs for simultaneous horizontal and 
vertical scanning (Velas et al., 2019) or rotated multilayer LiDAR for point cloud acquisition in the 
panoramic range (360 degrees in horizontal and vertical directions) (Sofonia et al., 2019). Both 
approaches can perform precise point cloud matching in an environment surrounded by random 
features such as a tunnel, or in an environment surrounded by artificial features such as an indoor 
environment or streets. However, both approaches require error adjustment with loop closure 
because of sequential point cloud matching. 
Therefore, in our methodology, we avoid the error accumulation issue with global point cloud 
matching among base and reference point clouds. Models generated with geometric constraints and 
all scan data are used as base point clouds, and each scan datum is used as reference data. The 
proposed methodology is a mobile 3D measurement system consisting of a multilayer LiDAR and 
RTK-GNSS devices. Moreover, the proposed methodology integrates point clouds that measured a 
rigid and static environment. This work used a carry cart, vehicle, and UAV, as mobile platforms to 
achieve stable movement along a straight line. 
A multilayer LiDAR is mounted on a mobile platform diagonally (forward or backward) with respect 
to the horizontal plane for uniform point cloud generation in horizontal and vertical directions after 
point cloud registration. Point cloud acquisition is conducted with the following several requirements. 
First, the measurement environment requires open sky environments to use GNSS positioning. 
Second, a one-way measurement along a straight line is applied because loop closure is not required. 
Third, point cloud acquisition allows several degrees of rotation changing per second by vibration. 
Before or after 3D measurement, the surface estimation using RANSAC is applied to the acquired 
point cloud using scan data to estimate offset values consisting of the mounting angles (roll and pitch 
angles) and height from the road surface of LiDAR. 
The coordinate system in processing is defined as follows. First, the center of multilayer LiDAR is 
used as the origin point, and the average of translation vectors is used as the reference axis. The 



translation vector is a vector on the horizontal plane estimated in the local movement, and it is 
estimated from RTK-GNSS positioning results. The reference axis is the Y-axis, the axis orthogonal 
to the reference axis on the horizontal plane is the X-axis, and the remaining axis is the Z-axis. The 
rotation angle around the Y-axis is defined as the roll angle, the rotation angle around the X-axis is 
defined as the pitch angle, and the rotation angle around the Z-axis is defined as the yaw angle. 
The proposed methodology estimates the rotation matrix R for point cloud registration without 
control points. The rotation matrix is estimated based on the following equation with the 
minimization of residualΔX of the corresponding points between the base and reference data. 
 
ΔX = | (R・Xb + t) －Xa |                     (1) 
 
Here, Xa represents the base data, Xb represents the reference data, and ΔX represents the residuals 
of corresponding points when Xb is aligned with Xa. 
 
The translation vector t is determined with RTK-GNSS positioning as a known parameter. The 
rotation matrix R is determined by point cloud matching using RTK-GNSS positioning results and 
geometric constraints. Point cloud matching consists of roll angle rectification, initial point cloud 
registration, yaw angle rectification, pitch angle rectification, and yaw angle re-rectification, as 
shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed methodology 
 
2.1 Roll angle rectification 

 
A road cross section orthogonal to a road centerline draws an upwardly convex curve because of the 
drainage on the road surface. The height difference between the road centerline and road edge is 
small with respect to the road width. The cross slope specified is 1.5-2.0 % in the Japanese road 
structure ordinance. Therefore, we use a geometric constraint that the road cross-section direction 
includes horizontal surfaces in each scan datum. Next, point clouds close to LiDAR and in the area 
of road cross section are selected from each scan datum. The selected point clouds are used for 
surface estimation by RANSAC. In each scan datum, the estimated surface is rotated on the Y-axis, 
and the horizontal rotation angle is used as the roll angle rectification angle (Figure 2). 
 
 
 
 
 
 
 
 
 

Figure 2. Roll angle rectification 
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2.2 Initial point cloud registration 

 
Initial registration is a process to obtain initially integrated point clouds to rectify the yaw and pitch 
angles of LiDAR. First, translation vectors are estimated from the time-series positioning data 
obtained by RTK-GNSS positioning, and the time-series azimuth angle data are estimated. The 
estimated azimuth angles are used as the yaw angles. Moreover, the offset values of the LiDAR 
position are used as the roll and pitch angles. Then, each scan datum is rotated around the Z-axis, 
and the rotated scan data are translated with time-series positioning data obtained by RTK-GNSS 
positioning. All rotated and translated scan data are used as the initially integrated point clouds. 
 
2.3 Yaw angle rectification 

 
The yaw angle rectification consists of linear segment extraction from the initially registered point 
clouds and scan data matching with the extracted linear segments. First, point clouds within higher 
positions than road surfaces are extracted from initially registered point clouds using the offset values 
of the LiDAR position. Next, the extracted point clouds are projected into raster data with arbitrary 
spatial resolution, and linear segments, such as guardrails, road edges, and electric cables, are 
extracted in the projected point clouds by Hough transformation (Figure 3). Afterward, parallel 
representative line segments are selected from the extracted linear segments to be used as guardrails 
or road edges. These line segments are used as base data, and each scan datum after the initial 
registration is used as reference data. Then, scan matching is performed with Z-axis rotation to 
estimate the rectification yaw angle for each scan datum (Figure 4). 
 
 
 
 
 
 
 
 
 

Figure 3. Straight line extraction  Figure 4. Rectification of yaw angle 
 
2.4 Pitch angle rectification 

 
In the pitch angle rectification, point clouds and extracted parallel line segments are first rotated and 
translated to adjust along the X- or Y-axis of processing space for higher processing in the re-
rectification of pitch and yaw angles (Figure 5). Next, after the yaw angle rectification, the point 
clouds along the center of parallel line segments are automatically selected to estimate the 
longitudinal section line. The longitudinal section line is used as the base data, and each scan datum 
rectified with yaw angles is used as the reference data. Then, scan matching is performed with X-
axis rotation to estimate the rectification pitch angle for each scan datum (Figure 6). 
 
 
 
 
 
 
 
 
 
 

Figure 5. Preprocessing of pitch angle  Figure 6. Pitch angle rectification 
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2.5 Yaw angle re-rectification 

 
Each scan datum after the pitch angle rectification is further rectified with Z-axis rotation based on 
point cloud matching, and the rectified results are used as yaw angles of each scan datum. Although 
the yaw angle re-rectification follows the same methodology as the first yaw angle rectification, the 
input point clouds are different from those at the first rectification (point clouds after pitch angle 
rectification are input in the re-rectification). Moreover, line segments after the re-registration can 
be used as more precise base data for point cloud matching, because line segments are extracted from 
integrated point clouds with the rectification of each scan datum. 
 
3. EXPERIMENTS 

 
In our experiment, we used a multilayer LiDAR (VLP-16, Velodyne) with GPS antenna for timing 
(Figure 7) and a single-frequency RTK-GNSS receiver and antenna (C94-M8P-4, u-blox) (Figure 
8). Single-frequency RTK-GNSS positioning is position data acquisition with single-frequency 
GNSS receivers that enables multi-GNSS positioning by combining GPS, GLONASS, BeiDou, 
and QZSS to perform RTK-GNSS positioning. In our experiments, a combination of GPS, BeiDou, 
and QZSS was applied using u-center v19.06 (u-blox). A GPS antenna was connected to LiDAR, 
and GPS time was recorded along with laser scanning using Velodyne v3.5.0 (Velodyne). The 
GPS time assigned to the LiDAR data was used to synchronize the time between the laser scanning 
data and the RTK-GNSS positioning data with a 1-Hz sampling rate. Besides, a single-frequency 
RTK-GNSS reference station was installed near the measured objects. We installed the reference 
station consisting of a single-frequency RTK-GNSS receiver (C94-M8P, u-blox) and an antenna 
(Zephyr Geodetic 2, Trimble), and the reference station was connected wirelessly to the receiver 
on the mobile platform using u-center v19.06 (u-blox). In single-frequency RTK-GNSS 
positioning, a Fix status was obtained after approximately 15 minutes of initialization, and 
positioning accuracy was several centimeters under open sky environments with a continuous Fix 
status until the end of laser scanning. 
 
 
 
 
 
 

Figure 7. VLP-16 (Velodyne)        Figure 8. C94-M8P-4 (u-blox) 
 
We conducted two types of experiments. The first experiment was a preliminary experiment on 
initial point cloud registration using UAV without the influence of positioning environments. The 
second experiment was an experiment on point cloud registration using land-based measurement 
under the influence of the positioning environment. In the preliminary experiment, UAV (E-
695MP, EAMS ROBOTICS) was used, and LiDAR was mounted on a gimbal installed with a 
forward direction of 20 degrees from the vertical axis (Figure 9). After the initialization to obtain 
the Fix status for RTK-GNSS positioning, LiDAR and position data were acquired along the 
longitudinal direction of a river with one-way measurement. 
 
 
 
 
 
 
 

Figure 9. Mobile 3D measurement system (UAV) 
 



In the experiment using a cart, LiDAR was mounted on the cart in the downward direction at 
approximately 30 degrees and a height of 1 m from the road surface (Figure 10). The single-
frequency RTK-GNSS antenna was mounted on the cart at a position of 0.22 m in the horizontal 
direction and a height of 0.35 m from the LiDAR. After the initialization to obtain the Fix status 
for RTK-GNSS positioning, LiDAR and position data were acquired from the cart pulled at a speed 
of 1 km/h along the centerline of the road. A small road bridge (12.5 m length and 4.2 m width) 
was selected as a measured object. Markers as verification points were installed at three positions 
along the centerline of the road and three positions on each side of the road. The center position of 
each marker was measured by a nonprism total station, and global coordinate values were obtained 
using a public reference point (Figure 11). We acquired 527 scans and 8,521,697 points, and we 
selected point clouds below the LiDAR position and within a distance of 5 m from the LiDAR. 
The search range in the pitch angle was 2 degrees, and the search range in the yaw angle was 10 
degrees. The spatial resolution of the raster data used in Hough transformation in the yaw angle 
rectification was 0.005 m. We compared scan matching processing using ICP and NDT algorithms 
(conventional algorithms) with our proposed methodology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Mobile 3D measurement system   Figure 11. Verification point layout 
(pull-type mobile mapping system) 

 

4. RESULTS 
 
Figure 12 shows the preliminary experimental results of the initial point cloud registration to 
compare our proposed methodology with the scan matching processing using an ICP algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Preliminary experiment results on initial point cloud registration using UAV LiDAR data 
(left: scan matching processing using an ICP algorithm, and right: proposed methodology) 
 



Figure 13 shows the results of the scan matching with ICP, NDT, and proposed algorithms obtained 
in mobile 3D measurement using the cart. The processing time for each methodology was ICP 
registration: 364.69 seconds, NDT registration: 809.61 seconds, and proposed methodology: 400.64 
seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Point cloud registration results using a pull-type mobile mapping system (left: scan 
matching processing with an ICP algorithm, center: scan matching processing with a NDT 
algorithm, and right: proposed methodology) 
 
We compared the results of the conventional and our proposed methodology. As shown in Figures 
12 and 13, conventional approaches failed to register point clouds. In contrast, we qualitatively 
evaluated that our proposed methodology sufficiently registered point clouds. The reason for failure 
in the point cloud registration with the conventional approaches is that the point cloud of each scan 
datum is too sparse among each scanning line to find corresponding points, even if the error values 
are small enough between the base and reference data, as shown in Figure 14. In contrast, in our 
proposed methodology, point clouds corresponded easily between the base and reference data, 
because the base data are dense point clouds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Point matching using sparse point clouds as input data 
 
Figure 15 shows the initial and fine registration results. The initially registered point clouds were 
thick at thin guardrail surfaces, as shown in the left images of Figure 15. In contrast, point cloud 
representation was improved after fine registration, as shown in the right images of Figure 15. 
Moreover, unclear markers in the initially registered point clouds (left images in Figure 15) become 
clear markers in the fine registered point clouds (right images in Figure 15). 
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Figure 15. Registered point clouds (left: initial registration result, and right: fine registration result) 
 
Furthermore, the registration accuracy was verified using the verification points (markers). The 
point clouds were registered with the ICP algorithm using markers 1, 3, 7, and 9. Then, the 
registration accuracy was evaluated by the registration errors using markers 2, 4, 5, 6, and 8. The 
relative accuracy was X = 0.082 [m], Y = 0.036 [m], and Z = 0.019 [m] (RMSE); and the accuracy 
in the 3D direction was 0.092 [m] (RMSE). We confirmed that point clouds were registered well 
because the distance measurement accuracy of VLP-16 is approximately 3 cm. 
In the preliminary experiment of single-frequency RTK-GNSS positioning to acquire observation 
data for 1 hour at a fixed point, the relative accuracy was X = 0.0099 [m], Y = 0.0434 [m], and Z = 
0.0422 [m] (RMSE). Moreover, the accuracy in the 3D direction was 0.061 [m] (RMSE). The 
accuracy of the mobile 3D measurement system was calculated as 0.068 [m] (RMSE) based on the 
error propagation using catalog values of the accuracy of LiDAR distance measurement and RTK-
GNSS positioning. Thus, the acquired data are matched with the theoretical values. 
Additionally, we evaluated the registration error with other combinations of markers. When point 
clouds were registered with the ICP algorithm using markers 4, 6, 7, and 9 as reference targets, the 
relative error value of markers 5 and 8 as verification targets was X = 0.063 [m], Y = 0.030 [m], 
and Z = 0.017 [m] (RMSE). The improved accuracy of registration indicates the possibility that the 
length of line segments at the start or end points of the bridge was too short to apply for the line 
segment matching (the amount of reference data is insufficient) in the yaw angle rectification and 
re-rectification. 
In our experiment, because the road bridge was selected as a measured object, the guardrails were 
extracted as linear features in the yaw angle rectification. Our methodology can be applied to other 
objects when the objects contain linear features such as wall surfaces near the trajectory line on the 
horizontal plane. Moreover, when the model fitting methodology is applied with known models 
such as curved features, the yaw angle can be rectified at curve areas. 
 
5. CONCLUSION 
In this paper, we focused on the use of RTK-GNSS positioning and multilayer LiDAR to improve 
point cloud registration in SLAM. We proposed a registration methodology for point clouds 
acquired using mobile 3D measurement systems with the extended Manhattan World Assumption 
as geometric constraints. Through experiments on mobile mapping using multilayer LiDAR 
mounted on a UAV and cart, we verified that point clouds can be integrated without IMUs. We also 
verified that our proposed methodology can avoid error accumulation issues in SLAM. 
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