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ABSTRACT: With the tremendous development of remote sensors, a large amount of remote
sensing data is used in applications related to remote sensing, which poses new challenges to the
efficiency and ability of processing big data. Spatio-temporal remote sensing data fusion can recover
high spatial and high resolution remote sensing data (HSHT) from multiple remote sensing data, but
the current method is time-consuming and inefficient, especially for the newly proposed deep
learning-based method. Here, we propose a fast 3D convolutional neural network method based on
spatio-temporal fusion using spatio-temporal spectral data set (STF3DCNN). This method can fuse
low-space high-time resolution data (HTLS) and high-space low-time resolution data (HSLT) on a
4-dimensional data set of spatio-temporal spectrum, while ensuring accuracy. The method was tested
on 3 data sets and ablation studies were conducted. This method is compared with the existing
commonly used spatio-temporal fusion methods, which proves our conclusion.

1. Introduction

With the rapid development of remote sensing sensors and their applications, a large amount of
remote sensing data has been accumulated, making it possible for applications related to long-term
monitoring. Various satellites have obtained a large number of data sets with different spatial and
temporal resolutions. Due to the limitations of satellite sensors, remote sensing data sets cannot
have high spatial and temporal resolutions at the same time. Combining the advantages of different
remote sensing products to obtain data sets with high spatial resolution and high temporal
resolution has become a continuously developing research field.

Spatiotemporal data fusion is an effective choice to achieve this goal. So far, researchers have
proposed many spatio-temporal fusion methods. They can be divided into 3 categories (L. Zhang,
Peng, Sun, Cen, & Tong, 2019): weighted function method, linear optimization decomposition
method and nonlinear optimization method. The weight function method assumes that there is a
linear relationship between high-space and low-time resolution images and low-space and
high-resolution images, and introduces time, space, and spectral weights into the model. The pixel
center in the sliding window is used to determine the center pixel value. For example, the
spatiotemporal adaptive reflection fusion model (STARFM) (Gao, Masek, Schwaller, & Hall, 2006)
has been improved by scholars, the STAARCH model (Hilker et al., 2009), and the enhanced
STARFM algorithm. (ESTARFM) (Zhu, Jin, Feng, Chen and Masek, 2010), mESTARFM (Fu,
Chen, Wang, Zhu and Silk, 2013) and RWSTFM (J.Wang and Huang, 2017). The linear
optimization decomposition method is also based on the linear assumption, and its principle is



similar to the weight function method. The reconstructed image is obtained by adding constraints to
obtain the best solution. Based on the optimal principle, linear optimization decomposition methods
can be divided into methods based on spectral decomposition, Bayesian method and sparse
representation. Commonly used algorithms include MMT spectrum decomposition algorithm
(Zhukov, Oertel, Lanzl, & Reinhackel, 1999), STDFM algorithm (Mingquan, Zheng, Changyao,
Chaoyang, & Li, 2012), ESTDFM (W. Zhang et al., 2013), MSTDFA (Wu, Shen, Zhang, & G?
Ttsche, 2015), soft clustering (Amorós-López et al., 2013), OB-STVIUM algorithm (object-based
image analysis, OBIA). Non-linear mapping method based on deep learning method that can
describe nonlinear relationships well. Some scholars have also explored the use of deep learning
methods for space-time fusion. In recent years, the use of convolutional neural networks (CNN) for
spatiotemporal fusion algorithms, such as STFDCNN (Song, Liu, Wang, Hang, and Huang, 2018),
DCSTFN (Tan, Peng, Di, and Tang, 2018), have also been proposed. The nonlinear optimization
method can learn and accurately describe the nonlinear relationship between the known and
missing time phase images, and has higher mobility and accuracy than the linear optimization
decomposition method. However, its function is related to network architecture design and
parameter settings. Poor network structure usually fails to obtain good results and requires a lot of
training samples and training time.

Moreover, the increase in the number of remote data sets and application requirements has brought
challenges to the processing of long-term sequence data sets, requiring methods to have the
capacity to handle huge data sets. Due to the design of this algorithm, traditional methods and deep
learning methods 3D convolutional networks have recently been widely used in the fields of video
and computer vision. Instead of 2D ConvNet, which only performs operations in space, in 3D
ConvNet, convolution and pooling operations are performed spatio-temporal. This is exactly where
3D ConvNet is very suitable for spatiotemporal feature learning (Tran, Bourdev, Fergus, Torresani
and Paluri, 2015). (Height and width) and the 3 dimensions of the spectrum are divided, so it is
difficult to re-divide and process the repeated sequence. Zhang et al. In 2017, the idea of ​ ​ a new
multidimensional data set (MDD) was proposed (L. Zhang, Chen, Sun, Fu, & Tong, 2017), which
can establish a spatio-temporal spectral data set and integrate 4-dimensional information. MDD can
meet the correlation analysis of multiple features in different dimensions, so it is a better choice to
combine with 3D convolutional neural network tools.

Based on the above reasons, we here propose a fast spatiotemporal inverse fusion method using 3D
convolutional neural network tools. The data set is arranged based on the idea of MDD and
executed in 4 dimensions. The architecture always uses a 3D convolutional neural network to learn
the mapping between the HTLS residual sequence and the HLST data set, and adds it to the original
HLST data set, thereby reconstructing the overall long-term sequence data set of HTHS. The
method is easy to implement and efficient and maintains accuracy.

2. Methodology
2.1 4D data arrangements

MDD arranges the data set in the 4 dimensions of the time and space (height and width) spectrum.
The storage structure of MDD is called SPAtial-Temporal-Spectral (SPATS). According to the
arrangement form, it mainly consists of 5 types of data formats, namely, the time sequence in the
frequency band (TSB), the time sequence in the pixel (TSP), and the time of the frequency band.
Interleaving (TIB) and Time Interleaving (TIS) of the spectrum. Here, we draw on the ideas of TSB,
which can be expressed as follows. The TSP storage format first stores pixel data in the first time
period t 1 in the order of the first column, and then stores the data in the order of each time period t
1, and finally, according to the above rules, the time cube data is stored in chronological order.



Figure 1 TSP data format of MDD

2.2 Overall Frame

The main idea of this method is to learn the mapping between the residual sequences of HTLS and
HSLT. The overall architecture of this method is shown in Figure 2. It consists of two main parts:
the 4D residual sequence arrangement part and the 4D residual feature mapping network. The 4D
residual sequence arrangement part arranges the HSLT and HTLS data into the 4D residual
sequence data set to learn 4D residual mapping and predict HTHS. The principle is shown in the
illustration in 2.1. The 4D residual feature mapping network will extract features in time residuals
and spatial dimensions. The architecture of the mapping network is simple and lightweight. It
consists of several fully convolutional neural networks, after which the Leaky ReLu layer is set to
increase nonlinearity and prevent overfitting.

Figure 2. Overall Frame of ST3DCNN-TRS



As shown in the figure, the red line represents the training process, and the green line represents the
prediction process. In the training mode, the original HTLS data set is first subsetted according to
the same/close date of HSLT. First, the subset of HSLT and HLTS is used as the input of the entire
training process, and then the 4D spatial residual permutation part is used for preprocessing to
obtain the 4D residual sequence of HTLS (subset) and HSLT (4DRHTLS and 4RDHSLT). Then
input the 4D residual sequence into the 4D residual mapping network for training. Set 4DRHTLS
as network input and 4DDHSLT as network output. In the prediction mode, the original HTLS uses
the 4D spatial residual permutation part for preprocessing, and obtains the 4D residual sequence of
HTLS (4DRHTLS). Then input 4DDHTLS into the network to predict the simulated 4D residual
sequence of HLHT (4DRHTHS). Finally, 4DRHTHS is added to the original HSLT4D, and
together with the original HSLT4D, the predicted HSTH4D is generated.

3. Datasets and Experimental Settings
3.1 Datasets

In order to verify the effectiveness of this method, three data sets are used in the experiment. They
are:

(I) Coleambally Irrigation Area (CIA) data set. It is an open source remote sensing dataset of rice
irrigation system located in southern New South Wales, Australia (34.0034°E, 145.0675°S), which
has been widely used in time series remote sensing research (Emelyanova, McVicar, Van Niel, Li
and van Dijk, 2013 year). It contains 17 pairs of cloudless Landsat7-ETM and MODIS data
detected during the summer growing season of 2001-2002. The total area is 2193 square kilometers
(1720 columns of 2040 lines, with a resolution of 25 m). Initially, the nearest neighbor resampling
algorithm was used to resample the MODIS data to the same spatial resolution of Landsat. But
because the MODIS data contains irregularly high value points, we use the bilinear resampling
algorithm to resample the MODIS data back to the original resolution and resample it back to 25m.
For the sake of simplicity, all scenes are cropped into 1500 columns by 2000 rows. This data set is
a good sample of seasonal changes in complex ground.

(II) The Lower Gwydir Catchment (LGC) data set. It is also an open source remote sensing dataset
(Emelyanova et al., 2013) sensed in northern New South Wales (149.2815°E, 29.0855°S) from
April 2004 to April 2005. It consists of 14 pairs of cloudless Landsat5 TM-MODIS, with 3200
columns by 2720 lines, and a resolution of 25 m. Similarly, the nearest neighbor resampling
algorithm was initially used to resample MODIS data to the same spatial resolution of Landsat.
Since MODIS data contains irregular pepper noise and is difficult to remove, the bilinear
resampling algorithm is used here to synthesize MODIS data with Landsat data, and 40dB noise is
added to simulate the sensing process. For the sake of simplicity, all scenes are cropped into 3000
columns by 2500 rows. On October 10, a flood occurred in this field, which made the data
integrated into a good sample of a long-term sequence, and its sudden changes were more
unpredictable and irregular than the CIA data set.

(III) Real Data Set (RDT). It was sensed in Louisiana (122°39′34.33″ W, 39°22′4.17″ N)
from June to October 2013. It consists of 9 pairs of Landsat8-OLI-MODIS, and each scene is
divided into 800 columns and 800 rows. Frequency band is a subset of 4 frequency bands. All data
are preprocessed after geo-referencing and atmospheric correction. The bilinear resampling
algorithm is used to resample the MODIS data to the same resolution as the Landsat data. This data
set is a good sample of seasonal changes in crop fields and vegetated mountains.



4. Results

In order to compare the texture and tones of the reconstructed dataset, here we choose one date per
dataset to display the fusion results in whole scene and detail. For the CIA dataset, date 10 was
selected and their RGB composites are shown in the Figure 3. We can see that our method recovers
the texture and tone well and similar to FSDAF. For ESTARFM some landcovers were largely
mistaken. DCSTFN can recover the data yet suffer from blur. We can see that for CIA dataset, our

method and FSDAF can best predict the missing image.

(a) (b) (c) (d) (e)
Figure 3. RGB composites of results of CIA at date 10(Overall and Detail)
(a. Reference image b. STF3DCNN c. ESTARFM d.FSDAF e.DCSTFN)

For the LGC dataset, date 10 was selected. It is the date when the flood occurs with drastic change.
Their RGB composites are shown in the Figure 4. We can see from the figure that our method can
recover the flooded area with accurate texture and tone. And FSDAF can also well predict the
flooded area, which seemingly outperform ESTARFM. For DCSTFN the tones are a little wrong

and the texture suffers from blur.



(a) (b) (c) (d) (e)
Figure 4. RGB composites of results of LGC at date 10 (Overall and Detail)
(a. Reference image b. STF3DCNN c. ESTARFM d.FSDAF e.DCSTFN)

For the RDT dataset, date 6 was selected and the RGB composites are shown in the Figure 5. The
whole image and the detail(with multiple landcover types) shows that our method performs well as

well as FSDAF. And for ESTARFM the tone is not completely true to the original as well as
DCSTFN.

(a) (b) (c) (d) (e)
Figure 5. RGB composites of results of RDT at date 6 (Overall and Detail)
(a. Reference image b. STF3DCNN c. ESTARFM d.FSDAF e.DCSTFN)

Also, to best show the average accuracies of our methods, we calculated the average indices of each
method on all dates, and record the overall running time of all time-series. The average accuracy
results and total running time are shown in the tables below. We can see that though our method did
not perform the best, yet it did not perform too badly. However, the total running time decreased
hugely by many times. For traditional methods using CPU, our method increased the efficiency by
109 times(ESTARFM) and 104 times(FSDAF). And for the DCTSFN, which is also the deep
learning spatiotemporal fusion method, the running time shrinks 12 times among three datasets. And
we can find the tendency that larger the dataset, higher efficiency. The experiments proved our goal:
our method maintains the average accuracy of the existing method and at the same time it hugely
increase the efficiency.

Table 1. Average fusion indices results of all three datasets
CC SAM RMSE ERGAS PSNR Q DD SSIM KGE

STF3DCNN 0.8740 0.9928 386.4355 1.3724 33.3709 0.8684 104.2675 8.51833E-06 0.8410
ESTARFM 0.8255 0.9892 403.6620 1.4545 29.2558 0.8158 82.3293 8.57584E-06 0.7364
FSDAF 0.8595 0.9920 362.5359 1.3659 29.9007 0.8525 129.0426 8.80058E-06 0.8216
DCSTFN 0.6969 0.9753 552.7776 2.2547 26.8396 0.6715 255.0605 5.98376E-06 0.6293



Table 2. Running times of whole time series using different method(in seconds)
CIA/s LGC/s RDT/s

STF3DCNN 552 987 77
ESTARFM 6.40E+11 9.63E+15 14435.744
FSDAF 2.94E+06 6.40E+09 7595.211
DCSTFN 6910 12278 489.4740

5. Conclusions

In this article, we propose a fast spatiotemporal fusion method using a 3D fully convolutional neural
network on a spatiotemporal spectrum dataset. Based on the idea of ​ ​ multidimensional data set
(MDD), the long-term series data is arranged and operated in 4 dimensions according to the
spatio-temporal spectrum data set. By using a 3D fully convolutional neural network to learn the
mapping between the residual sequences of HTLS and HSLT, compared with existing methods, this
model can efficiently restore the 4D HTHS data set and maintain accuracy.

In this article, we used 3 data sets to verify the efficiency and accuracy of the method. An ablation
study was conducted to discuss the influence of parameters on long-term sequence spatio-temporal
fusion under different circumstances, including network depth, whether to use time weights, and
whether to use residual blocks. We found that the smaller the number of layers, the higher the
accuracy and efficiency; for long corridors with seasonal and regular changes in time weight, the
performance of the model is better; for land cover with sudden irregular changes, The effect of not
using time weighting is better. Using residual blocks does not improve accuracy. Finally, the method
is compared with existing methods in accuracy and running time. Experiments show that our method
can greatly improve efficiency and maintain overall accuracy, especially when the data set is large
and the time span is long.
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