
Inversion of Water Quality Parameters of Maozhou River by Hyperspectral 

Technology  

 

Linshan Zhang (1)(2), Lifu Zhang (1), Xuejian Sun (1), Sa Wang (1)(2) 

 
1 Aerospace Information Research Institute, Chinese Academy of Sciences, 20 Datun road, 

Chaoyang District, Beijing, 100101, China 
2 University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, 

China 

Email: zhangls@aircas.ac.cn; zhanglf@radi.ac.cn; sunxj@radi.ac.cn; wangsa@aircas.ac.cn   

 

 

KEY WORDS: Urban river; Water quality monitoring; Ratio index; In-Situ data; Hyperspectral 

 

ABSTRACT: Maozhou river is the largest and the most representative pollution urban river in 

Shenzhen. The pollution sources of Maozhou river mainly come from the upstream and domestic 

or industrial water, which has a serious impact on residents' life and urban ecological environment. 

Therefore, water quality monitoring of Maozhou river is extremely significant, not only for 

sustainable construction of water environment in Shenzhen, but also for urban river water quality 

research. Most of the current studies focus on large lakes and reservoirs, few on urban rivers. In 

this paper, the water quality parameters and in-situ reflectance of 15 sampling points were 

simultaneously measured. The monitoring model were established by measured spectral data, the 

inversion accuracy of chl-a, TSS, COD, total phosphorus, total nitrogen and ammonia nitrogen 

ratio index is above 0.55. The results showed that hyperspectral technology can provide data 

source and method for urban river water quality monitoring. 

 

1. Introduction 

 

With the rapid development of economy, water pollution is becoming a serious problem, 

restricting the sustainable development of the city(Chen et al. 2018). Therefore, it is very important 

for people's production and life to obtain the water quality of rivers and lakes quickly(Han et al. 

2014; Zhou et al. 2013). According to the traditional method of water quality monitoring, artificial 

monitoring stations are set up in the water area, and water samples were taken back to the 

laboratory for testing by chemical reagents or professional instruments. This method has a higher 

precision, while it is easy to cause secondary pollution for water. 

 

Remote sensing technology has been widely used to monitor water quality because of its wide 

range and multi temporal(Feng et al. 2015; Harvey et al. 2015; Palmer et al. 2015; Salem et al. 

2017). Several researchers have attempted to monitor the water quality using remote sensing 

approaches.  For example, Moderate Resolution Imaging Spectroradiometer (MODIS) data were 

used to estimate coastal Chl-a concentration(Manzar Abbas et al. 2019). A unified algorithm of 

eutrophic and ultra-turbid waters were developed and Chl-a and turbidity in different regions were 

evaluated (Sakuno et al. 2018). A multi-linear regression between Rrs of each wavelength and the 

in-situ chl-a were used to observe coastal environment of the west coast of South Korea (Baek et 
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al. 2019). While due to the limitation of temporal and spatial resolution of satellite images, satellite 

remote sensing technology is often used in large area water monitoring, there is little research on 

urban river. 

 

This study aimed to explore the method of urban river water quality monitoring, consisted of two 

steps: (1) analyze in situ water reflectance spectra and relationship of different water parameters. 

(2) establish the ratio index model and evaluate the accuracy by correlation coefficient(R) and 

coefficient of determination(R2).  

 

2. DATA AND METHODS 

 

2.1 Study Area 

 

Maozhou river originates from the northern foot of Yangtai mountain, and distributes in most areas 

of Shenzhen and some areas of Dongguan. As the largest river in Shenzhen, it has 1 main stream 

and 45 tributaries, whose main stream is 41.61km and the drainage area is 398.13km2. As an urban 

river, Maozhou river is also the most representative pollution river of Shenzhen, whose pollution 

mainly comes from the upstream and domestic or industrial water, serious impacting on residents' 

life and urban ecological environment.  

 

2.2 Data Source 

 

Field data were obtained from Maozhou river in January 2018(from January 22 to 29), with a total 

of 15 sample points. Figure 1 shows the locations of the sampling sites. For each sampling site, 

water were collected from a depth of 50cm. All of the samples were placed in incubators for 

subsequent measurements in the laboratory.  

 

 

Figure 1. Remote sensing image and sampling points distribution of Maozhou river. 



Field data were measured by PSR-3500 spectrometer, which covers the  spectral range from 350 

to 2500nm and provides a spectral resolution of 3.5nm, 10nm and 7nm at the wavelengths of 

700nm, 1500nm and 2100nm. The radiances of water, sky, and a reference panel were measured 

at each sampling site. A total of 400 bands(400-1000nm) were selected to do research, the remote 

sensing reflectance spectra of sampling sites are shown in Figure 2. 

 

 

Figure 2. In-situ reflectance spectra of Maozhou river. 

 

Figure 2 shows the absorption characteristics of chl-a and phycocyanin in Maozhou river are 

obviously weak. In addition, it also shows strong phycoerythrin absorption characteristics at 

566nm, and the absorption characteristics at 502 nm may be the absorption characteristics of 

lycopene or organic dyes. The remote sensing reflectance spectra of Maozhou river shows a 

combined spectral characteristics of low chl-a and high organic matter. 

 

3. EXPERIMENTS AND RESULTS 

 

3.1 In-Situ Data 

 

The sample statistics of water quality parameters are shown in the Table 1. It mainly includes 

the maximum value, minimum value, mean value, standard deviation and coefficient of variation 

of each parameter. 

 

Table 1. Statistics analysis of water quality parameters of Maozhou river. 

 TSS (mg/L) COD (mg/L) NH3-N (mg/L) TP (mg/L) TN (mg/L) Chl-a (mg/m3) 

Max 116.00  185.00  46.40  4.42  53.90  8.76  

Min 30.00  24.00  1.09  0.29  2.56  2.64  

Mean 73.60  51.67  6.97  1.00  10.70  5.97  

SD 30.09  53.95  14.01  1.23  15.27  1.88  

C.V. 0.41  1.04  2.01  1.24  1.43  0.32  

 

The results of calculate the correlation coefficient between the water quality parameters are 



shown in Table 2. There is a strong correlation among COD, TP, TN and NH3-N, and all 

correlation coefficients are above 0.97. The correlation between TSS and other parameters is 

low, not more than 0.5. Chl-a has a similar correlation with TP, TN and NH3-N. 

 

Table 2. Correlation of water quality parameters. 

 TSS  COD  NH3-N  TP TN  Chl-a  

TSS  1 0.199052 0.240798 0.325148 0.307699 0.423562 

COD   1 0.97897 0.978645 0.973865 -0.31253 

NH3N    1 0.992879 0.994264 -0.56629 

TP    1 0.994938 -0.52316 

TN      1 -0.51835 

Chl-a       1 

 

3.2 Inversion Model 

 

Figure 3 shows the Pearson correlation between in-situ remote sensing reflectance and each 

water quality parameters. The correlation varied at different wavelengths for different water 

quality parameters. The change trend of TP, TN, COD and NH3-N is consistent, which is 

consistent with those in Table 2. The maximum negative correlation of TP, TN, COD and NH3-

N is at 712 nm. The maximum positive correlation of Chl-a is at 709 nm, the sensitive band of 

Chl-a. The negative correlation of TSS is at 717 nm, close to the sensitive band of Chl-a. The 

Figure 3 shows that the strong correlation of water quality parameters appear at about 700~720 

nm and 1000~1100 nm, while the correlation curve in 1000~1100nm is not smooth, because 

there are some noises after 900 nm(Figure2).  

 

 

Figure 3.  Correlation coefficient curve between water quality parameters and in-situ reflectance. 

 

The correlation coefficient of ratio index and difference index are shown in Table 3. In general, 

the correlation coefficient of all water quality parameters is above 0.74. TP, TN, COD and NH3-

N have the same characteristic band in difference indexs.  



In this paper, empirical model were used for estimating the concentrations of water quality 

parameters by sensitive indices. The accuracy of single band water quality monitoring model 

is not as high as that of dual band model. The ratio index and difference index are constructed 

from the reflectance of all bands, and then the correlation analysis between these indexes and 

each water quality parameter is carried out.  

 

Table 3. Spectral response characteristic of different indexs. 

 Ratio index(B1/ B2)  Difference index(B1- B2)  
 B1 B2 R R2 B1 B2 R R2 

TSS  113 140 -0.84834 0.72 137 112 0.863239 0.65 

COD  191 186 0.760652 0.58 454 453 0.808456 0.52 

NH3N  162 145 0.754395 0.57 454 453 0.788924 0.43 

TP 160 146 0.764513 0.58 454 453 0.7933 0.44 

TN  160 146 0.742559 0.55 454 453 0.796997 0.42 

Chl-a  192 187 -0.83162 0.69 192 186 -0.78498 0.68 

 

Through the band combination calculated, the linear regression model was established between 

each water parameter and index. The accuracy of the model was evaluated by the coefficient of 

determination(R2). Table 3 shows that the accuracy of ratio model is better than that of difference 

model for each water parameter. The R2 of the ratio model are all above 0.55, Tur is the highest, 

reaching 0.77, and TSS is 0.7, the two water parameters have a high correlation(Table 2). 

 
(a)TSS (b)COD 



 

(c)NH3-N (d)TP 

 

(e)TN (f)Chl-a 

   Figure 4. Correlation coefficients between the ratio index and water quality parameters. 

 

Figure 4 shows the coefficients between the ratio index and water quality parameters. The 

coefficients are relatively high in 740-750 nm (band 240-250) for TP, TN, COD and NH3-N. 

Table 4 shows the details of the models for the inversion of different water parameters. 

 

Table 4. Details of the inversion models for water parameter. 

Water parameter X Model Expression 

TSS Ref565.3/ Ref 607.1 Y = -771.65X + 891.64 

COD Ref678.5/Ref671.6 Y = 5670.1X - 5572.4 

NH3N Ref 638.2/ Ref 614.2 Y = 952.8X - 912.28 

TP Ref 635.4/ Ref 615.6 Y = 101.7X - 97.507 

TN Ref 635.4/ Ref 615.6 Y = 1224.9X - 1175.7 

Chl-a Ref 679.9/ Ref 673 Y = -307.93X + 316.13 

 

 

 



4. CONCLUSIONS 

 

In this paper, as a typical urban polluted river, Maozhou river was choosed as study area. We 

established index model according to the in-situ data, the accuracy of the model is above 0.55 

for all water parameters. In the future research, the higher spatial resolution image data is 

considered, such as UAV hyperspectral image, to obtain the distribution of water quality 

parameters, aiming to provide a new data source and technical means for urban river water 

quality monitoring, as well as water environment protection and management. 
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