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ABSTRACT: Historical topographic maps are valuable materials that provide information concerning past land uses, 
which are useful for hazard assessment. In particular, past residential and water areas are considered important as they 
are known to be related to the current disaster damage such as liquefaction and flood. Therefore, it is desirable to 
detect past land uses automatically from historical topographic maps and utilize them for hazard assessment purposes 
for large areas. To enable automatic detection, we first digitized and geo-referenced 1,300+ maps (from the 1890s to 
1930s). Next, we created the training data manually to train and evaluate the performance of the deep learning model. 
We use U-Net, a standard network for semantic segmentation, for our experiments. Furthermore, to increase the 
number of training data without additional annotations, we adopt a data augmentation method that effectively 
improves detection accuracy. As a result, our trained model achieves an F1-score of 0.87 for residential areas and 
0.97 for water areas on unseen test data.   

1. INTRODUCTION

Historical topographic maps were created and published by the Geospatial Information Authority of Japan in the past, 
and they are valuable materials that provide information concerning past land uses and topography. Therefore, the 
spatial and temporal geographic information in them is utilized in many research fields such as disaster mitigation, 
urban planning, environmental engineering, and social sciences. 

Especially, in the field of disaster mitigation, past land uses are known to be related to current disaster damages and 
ground conditions. Among past land uses, residential and water areas (examples are shown in Figure 1) are known to 
be highly relevant to current ground disaster damages such as floods and liquefaction. The specific relationship 
between past residential and water areas and current disaster damages is shown in Figures 2 and 3. As shown in Figure 
2, the flood that occurred in 2018 did not affect most of the past residential areas, indicating that those areas are still 
useful today to identify low disaster risk areas. Furthermore, the comparison of the current and historical topographic 
maps reveals that liquefaction damages are highly relevant to past water areas since they are more likely to have a 
high groundwater level and loose sandy soil (Figure 3).  

To utilize the above observations for hazard assessment purposes, it is necessary to analyze the relationship between 
past land uses and current disaster damages on GIS. However, in Japan, most the historical topographic maps have 
not been digitized and georeferenced. Furthermore, since the number of historical topographic maps is huge, it is 
required to automatically detect land uses from them to conduct the analysis. 

Therefore, in this study, we digitized and georeferenced 1,337 historical topographic maps to create a well-prepared 
dataset for subsequent analysis. Moreover, we propose a method to automate the detection of residential and water 
areas from digitized and geo-referenced historical topographic maps using deep learning.  

Figure 1 Examples of residential and water areas (The red lines indicate the symbols for each type of land use.) 
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Figure 2 Past residential areas were almost unaffected by the 2018 flood,  

indicating that they are still effective in identifying areas of low disaster risk today. 
 

 
Figure 3 Relationship between past water areas and liquefaction damages 

(The source of the image on the right is the Geospatial Information Authority of Japan.) 
 
 
2. MATERIALS AND METHODS 
 
2.1 Materials 
 
2.1.1 Geo-referencing of Maps  
 
We first scanned and digitized 1,337 historical topographic maps, which have a different geographical coordinate 
system from the modern maps. We then converted the geographical coordinate system from “Tokyo Datum” to 
“Japanese Geodetic Datum 2000” and georeferenced them by aligning the triangulation station with the current ones. 
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2.1.2 Dataset 
 
We chose 7 map sheets for residential areas and 6 map sheets for water areas of scale 1:50,000 (Table 1) and divided 
them and manually created ground truth images (positive for residential or water areas, negative for non-residential 
or non-water areas) vertically into two equal parts and then split 6:2:2 from left to right for training, validation, and 
test data (Figure 4(d), (e)). 
 
In general, a large amount of training data is preferred to train deep learning models. In this study, however, the 
amount of training data was limited due to the time-consuming processes of manually creating the ground truth images, 
as mentioned above. Therefore, we augmented the training data by cropping 512 x 512-pixel patches with shifting 
horizontally and vertically, and further rotating or horizontally flipping the patches (Figure 4(g), (h)).  
 
From Table 2 that shows the composition of each data set and the balance between the number of positive and negative 
pixels, it can be seen that the data used in these experiments is imbalanced, with fewer positive pixels than negative 
ones. Therefore, to reduce the negative pixels, we used only patches containing more than 1000 positive pixels as 
training data.  
 

Table 1 List of map sheets used in each dataset  

 

 
Figure 4 How to create datasets 
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Table 2 The composition and the balance of positive and negative pixels of each dataset 

 
2.2 Methods  
 
2.1.1 U-Net Architecture 
 
In this study, we used U-Net (Ronneberger et al., 2015), a standard network for semantic segmentation (Cordts et al., 
2016). Semantic segmentation is a task that performs classification for each pixel in an image. We used partially 
modified the original U-Net architecture for our experiments, changing the activation function from ReLU to ELU to 
create a more accurate model and applying a Dropout to each layer to prevent overfitting (Figure 5). Finally, we 
attempted to classify each pixel of the historical topographic maps into two classes, residential or not, using one 
trained model for residential areas, and water areas or not, using each of the three trained models for water areas. 
 

 
Figure 5 U-Net architecture used in our experiments 

 
2.2.2 Training Setup and Hyperparameters 
 
We implemented all of our networks using PyTorch (Paszke et al., 2019). For all processes of training, we used 
cross-entropy loss as the loss function and the Adam optimizer with an initial learning rate of 0.001 and 
ReduceLROnPlateau as the learning-rate schedule. The learning rate decayed by 10% if the loss value does not 
decrease for 3 epochs. The batch size was set to 8. All networks were trained using NVIDIA Tesla P100 GPUs in 
TSUBAME3.0. All computations in this article were carried out by using the TSUBAME3.0 supercomputer at the 
Tokyo Institute of Technology. 
 
 
3. EXPERIMENT RESULTS 
 
The following experiments demonstrate the effectiveness of the trained model on unseen test data. 
 
3.1 Results of Residential Area Detection 
 

For the training of the residential area detection model, the number of epochs was set to 100 because the loss continued 
to decrease steadily up to 100 epochs. After the training, we set the cutoff point to the value at which Precision and 
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Recall (definitions are shown in Table 3) were balanced and high in the PR curve (a graph with Recall on the 
horizontal axis and Precision on the vertical axis) when validation data was input to the model (Figure 6). Accordingly, 
the cutoff point was 0.6, and the performance of the model on unseen test data is shown in Table 4 and Figure7. The 
blue circles in Figure 7 show relatively small residential areas (3,600~4900 m2) were either omitted or falsely detected. 
We speculate that this is caused by the lack of tiny residential areas in the training data. Overall, however, Table 4 
and Figure 7 verify that our model detects residential areas accurately. 
 

Table 3 Confusion matrix and evaluation indices 

 
Figure 6 PR curve (The orange dot is the cutoff point.)   

 

 
Figure 7 The performance of the model on test data (The blue circles indicate false positives/negatives.) 
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3.2 Results of Water Area Detection 
 

When the model for detection of water areas was trained under the same conditions as for residential areas (only the 
number of epochs was changed to 200 because the loss continued to decrease steadily up to 200 epochs) and the 
cutoff point was set, the performance of the model (hereinafter called model Ⅰ), was poor, and there were cases where 
contour lines were mistakenly detected as water areas (Figure 8 (c), (d)). Since water areas have similar patterns to 
contour lines, we needed Model I to learn to distinguish between the two. However, some patches containing contour 
lines (i.e., mountainous areas) had no water areas at all, and these were not included in the training data under the 
condition of " training only patches that contained water areas at least 1000 pixels”. Therefore, we conjecture that 
model trained under the condition failed to learn the contour lines well.  
 

 
Figure 8 The performance of the model Ⅰ on test data 

 
Thus, to validate the above issue, we additionally trained model Ⅰ, using training data that also included patches with 
less than 1000 pixels of water areas. In addition, to make a model more distinguishable between water areas and 
contour lines, we added map sheets containing many mountainous areas to the original six map sheets (Table 5).  The 
composition of the dataset including the added data and the number of positive and negative pixels are shown in Table 
6. Regarding the additional trained model, referred to as model Ⅱ (the training methods for model Ⅱ are schematically 
illustrated in Figure 9), the number of epochs was set to 100. The batch size was set to 32 due to GPU’s memory 
usage and to speed up the training.  The cutoff point was 0.67 when determined in the same way as for residential 
areas, and the performance of model Ⅱ on unseen test data is shown in Table 7 and Figure 10. 
 

Table 5 List of map sheets added to the dataset of water areas 
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Table 6 The composition and the balance of 
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Table 7 The performance of  
the model Ⅰ ,Ⅱ, Ⅲ on test data 

model Ⅰ model Ⅱ model Ⅲ
Precision 0.828 0.974 0.927
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Figure 9 How to train each model 

 

 
Figure 10 The performance of the model Ⅰ &Ⅱ on test data 

(The red circles indicate areas of improvement in model Ⅱ.) 
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Table 7 and Figure 10 also show the performance of the model trained from the beginning with the data in Table 6 
(hereafter referred to as Model III) with 200 epochs (the number of epochs was determined as described because the 
losses continued to decrease steadily as in the previous model up to 200 epochs) and 32 batch sizes. In conclusion, 
model II has improved performance over models I and III, with fewer false positives/negatives. In other words, the 
performance of a model was improved by initially learning more balanced data and then having the model learn again 
all of the data, including the unbalanced data, rather than learning all of the imbalanced data from the beginning. We 
consider the improved performance of model II is due not only to the increased amount of training data but also to 
the fact that once the model learned the characteristics of the water areas on the balanced data, it became more robust 
to imbalanced data compared to the model that learned only imbalanced data (model III). 
 
4.   CONCLUSIONS 
 
We trained models using U-Net, one of the networks of deep learning, and attempted to automatically detect 
residential and water areas from historical topographic maps to analyze the relationship between past land uses and 
current disaster damages on GIS. As a result, our trained models achieved an F1-score of 0.876 for residential areas 
and 0.974 for water areas on unseen test data. We also confirmed that when learning imbalanced data, we can expect 
to improve the performance of models by first training them with more balanced data and then training them with 
imbalanced data. 
 
In the future, we will analyze and quantify the relationship between past land uses and current disaster damages to 
utilize residential and water areas detected from historical topographic maps for hazard assessment purposes. 
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