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ABSTRACT: The processing and information extraction of mobile point clouds has become an essential field of 

study in photogrammetry, remote sensing, computer vision, and robotics. Semantic segmentation is called to evaluate 

the singular features of the points together and collect them under meaningful clusters. This study aims to perform 

semantic segmentation with appropriate parameter selection using artificial neural networks. In addition, a study has 

been carried out to optimally define a point in the point cloud with the different feature spaces produced. Accordingly, 

eigen-based features are defined for each point. Eigen-based features describe the local geometry around the point 

and are commonly used in LiDAR processing today. Then, the most suitable parameters for semantic segmentation 

are determined. Multilayer Perceptron (MLP), an artificial neural network approach, was used in the study. The 

multilayer perceptron (MLP) is an artificial neural network to train any given non-linear input and contains several 

layers. Therefore, MLP is a suitable approach for solving non-linear problems. MLP has three layers: the input layer, 

the hidden layer, and the output layer. Paris-Carla-3D MLS dataset was used in the study. Paris-Carla-3D consists of 

two datasets, real (Paris) and synthetic (Carla). The dataset consists of data collected on a route 550 meters in Paris, 

5.8 km in CARLA. The only real part Paris was used in this study. The highest mIoU metrics were obtained as 21.85% 

with the 0.4 m support radius, 30000 training samples and 200 hidden layer size. 

1. INTRODUCTION

Depth perception is created for machines and 3D computer vision with three-dimensional (3D) models of objects 

produced by laser scanning (Duran and Aydar, 2012). Point clouds contain 3D position information, intensity, scan 

angle rank, and color. Extraction of information from three-dimensional (3D) data is a trending topic in 

photogrammetry, remote sensing, computer vision, and robotics (Atik et al., 2021). Recently, different sensors such 

as RGB cameras, light detection and ranging (LiDAR), depth camera or Radar, have been widely used for autonomous 

driving. LiDARs are now an essential part of sensing systems as they provide direct point cloud generation (Biasutti 

et al.,2019). Mobile LiDAR point clouds, which are mounted on a vehicle, are used for many tasks such as object 

detection, object tracking, and semantic segmentation (Li et al., 2021). 

Artificial Intelligence (AI) has wide usage areas in photogrammetry and remote sensing applications like many other 

research areas (Atik and Ipbuker, 2020). Deep learning (DL), which is one of the AI approaches, is increasing in 

usage in different fields because it is robust and requires less operator labor (Atik and Ipbuker, 2021). The number of 

layers is increased to improve the performance of DL architectures for fast and automatic feature extraction from 

large datasets. (Atik et al., 2022). Deep learning networks are used in many applications in the fields of computer 

vision, photogrammetry and remote sensing. Researchers improve successful point cloud semantic segmentation 

approaches based on machine learning and deep learning algorithms. Different approaches dealing with the semantic 

segmentation problem continue to be developed in the literature. It is possible to collect these approaches under 3 

main headings: Point-based, voxel-based and projection-based. Point-based methods learn the features of each point 

through shared MLPs (Qi et al., 2017; Qi et al., 2017b; Hu et al., 2020; Jiang et al., 2018). Point convolution methods 

recognize weights based on learned features with convolutions with more inputs (Li et al., 2018; Xu et al., 2018, 

Zhou et al., 2021). By collecting local shape information from neighbors, graph-based algorithms build point clouds 

as super-graphs and send it to a graph convolution network (Wang et al., 2018; Landrieu and Simonovsky, 2018). 

Voxel-based methods define point clouds within specific geometric shapes rather than processing them directly 

(Maturana and Scherer, 2015). However, 3D information loss may occur as a result of these transformations. 

Projection-based methods reduce the point cloud from 3D space to a 2D plane. Thus, they treat point cloud semantic 

segmentation as an image processing problem. Similar to voxel-based approaches, 3D information loss occurs (Atik 

and Duran, 2022). Some studies apply point cloud classification using machine learning and handcrafted features 

(Weinmann et al., 2015; Duran et al., 2021) 

In this study, point cloud semantic segmentation was applied to the Paris part of the mobile LiDAR dataset Paris-

CARLA-3D using the multilayer perceptron (MLP) method, which is an artificial neural network. The data in the 
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point cloud is defined by feature vectors containing eigen-based features that describe the local geometries of the 

points. The experiment was repeated with different parameter values to determine the appropriate parameters. Thus, 

it is aimed to obtain the optimum result. Optimal values were determined for the radius of support area suitable for 

the Eigen-based calculation, the number of points for the training data set, and the size of the MLP hidden layer. 

 

2. MATERIAL AND METHODS 

 

2.1 Paris-CARLA-3D Dataset 

 
The Paris-CARLA-3D (PC3D) dataset was created with a mobile mapping system including a LiDAR (Velodyne 

HDL32) inclined at 45° to the horizon and a 360° poly-dioptric Ladybug5 (Deschaud et al., 2021). Paris-Carla-3D 

consists of two datasets, real (Paris) and synthetic (Carla). The dataset consists of data collected on a route 550 meters 

in Paris, 5.8 km in CARLA. Only real part Paris was used in this study. Although the real part does not cover a large 

area (it includes three streets in the center of Paris), it is captured in areas where the number and variety of urban 

objects, pedestrian movements and vehicles are dense, allowing for various analyzes. Paris dataset consists of six 

point clouds containing 10 million points (S0 to S5), a total of 60 million points. The points are labeled under 23 

classes. In addition, since the mobile LiDAR system also includes a camera, the point cloud is colored (RGB) as a 

result of the necessary orientation processes. Example point cloud and labels from the dataset are shown in Figure 1. 

 

 
Figure 1. Sample cloud from Paris-CARLA-3D (PC3D) dataset. Colored cloud on left and labeled cloud on right 

(Deschaud et al., 2021). 

 

2.2 Multilayer Perceptron (MLP) 
 
The multilayer perceptron (MLP) is an artificial neural network to train any given nonlinear input and contains several 

layers. A single perceptron can solve linear problems but not non-linear problems. MLP is a suitable approach for 

solving non-linear problems. MLP has three layers: the input layer, hidden layer, and output layer. In an MLP, data 

flows from the input layer to the output layer, as in feed-forward networks. The input layer takes the input value to 

be processed in the network. The final task such as classification or regression is applied in the output layer. Hidden 

layers which are nonlinear layers, are placed between the input layer and output layer. Most of the computational load 

in the network is on the hidden layers. In classification problems, similar to all neural networks, the number of neurons 

in the input layer depends on the size of the input vector, while the number of neurons in the output layer is determined 

by the number of classes to be learned (Meyer-Bäse et al., 2004) 

A two-phase backpropagation (BP) algorithm is used in the training phase of an MLP. The output of the network and 

the error value are determined during the forward propagation phase. In the backpropagation stage, the error value 

propagates backward over the network. Adjustments are applied to the network's connection weight values between 

the layers to minimize the error value. 

 

Input data is taken into the network through the input layer and the “activation” propagates in the forward direction. 

Each hidden layer works like a detector on its own. 

𝑧ℎ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤ℎ
𝑇𝑥) =

1

1 + 𝑒𝑥𝑝[−(∑ 𝑤ℎ𝑗𝑥𝑗 + 𝑤ℎ0)𝑑
𝑗 ]

, ℎ = 1,2, … , 𝐻                                                    (1) 

The values calculated in the hidden layers are used as inputs to generate the yi prediction values in the output layer 

(Atik et al., 2021). 
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𝑦𝑖 = 𝑣𝑖
𝑇𝑧 = ∑ 𝑣𝑖ℎ𝑧ℎ + 𝑣𝑖0

𝐻

ℎ=1

                                                                                            (2) 

2.3 Geometric Features  

 

Eigen-based features are those that describe the local geometry around the point and are commonly used in LiDAR 

processing. A sphere or other geometric shape with that point as the center can be used to calculate the neighboring 

points surrounding a given location. This neighborhood area is called the support area. In this study, the support area 

was determined with a sphere. The critical parameter when creating the support area is the radius of the sphere. The 

sphere radius that best describes the local geometry should be determined. The eigen-based features (Weinmann et 

al., 2015) used in this study are presented in Table 1. 

 

Table 1. Eigen-based features were used in this study. 

Feature Explanation 

Sum of eigenvalues 𝜆1 + 𝜆2 + 𝜆3  

Omnivariance √𝜆1𝜆2𝜆3
3

 

Eigenentropy ∑ 𝜆𝑖 ln 𝜆𝑖
3
𝑖=1   

 Anisotropy (𝜆1 − 𝜆3)/𝜆1 

Planarity (𝜆2 − 𝜆3)/𝜆1 

Linearity (𝜆1 − 𝜆2)/𝜆1 

Surface variation 𝜆3/(𝜆1 + 𝜆2 + 𝜆3) 

Sphericity 𝜆3/𝜆1 

Verticality 1 − |⟨[0 0 1], 𝜆3⟩| 

Height value Zi 

Roughness 

Other features 
Normal change rate 

Number of neighbors 

Volume density 

 

2.4 Experiment 

 

In this study, point cloud semantic segmentation was performed with MLP. Each point in the point cloud is defined 

by its local eigen-based features. The most important parameter when determining eigen-based features is the support 

area of the point. In order to determine the appropriate radius, the experiment was applied with four different radius 

values. These radius values are defined as R01, R02, R03 and R04. Numerical values represent the radius in meters. After 

determining the appropriate radius for the geometric features, the number of points suitable for training was calculated. 

Accuracy is adversely affected in machine learning approaches, as unbalanced data can lead to bias in favor of large 

classes. For this reason, experiments were carried out with training sets created by selecting 10000, 20000, 30000 and 

40000 points from each class. Additionally, an experiment was carried out for the hidden layer dimension of the MLP 

algorithm. Point cloud semantic segmentation is applied for 50, 100, 150 and 200 hidden layer sizes. 

 

Geometric features were calculated with open-source CloudCompare software. MLP experiments were developed 

using the sci-kit learn library in the Python environment (Pedregosa et al., 2011). For the experiments, i7-11800H, 

2.30 GHz processor, GTX 3070 graphics card, and 32 GB RAM hardware is used. Precision, recall, F1 score, mIoU 

and overall accuracy were used as evaluation metrics. 

 
3. RESULTS AND DISCUSSION 

 
The support radius should be determined optimally for eigen-based feature extraction. If a large radius is chosen, both 

the processing load will increase and there will be results that exceed the local region of the point. If a small radius is 

determined, the local geometric area of the point will not be adequately defined and similar properties will be 

calculated for all points. This will make it difficult to distinguish the points. The eigen-based features calculated at 
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four different radius sizes were determined and semantic segmentation was carried out using the MLP algorithm. The 

highest evaluation metrics were obtained with the R0.4 support radius. Only in the accuracy metric, the highest value 

was obtained at the R0.2 radius with 63.99%. The lowest values in all metrics were obtained at the R0.1 radius. Eigen-

based features calculated using the R0.1 radius are insufficient to represent a point's local geometry. In general, the 

metrics increase as the support area gets larger. The results of the test performed for the radius of support are presented 

in Table 2. Predicted point clouds are shown in Figure 2. 

 

Table 2. Evaluation results based on different support radius for eigen-based features. 

Support Radius Precision Recall F1 Score mIoU Accuracy 

R0.1 26.79 30.44 25.14 17.33 57.73 

R0.2 28.45 37.64 28.14 20.23 63.99 

R0.3 28.61 39.17 28.68 20.27 62.58 

R0.4 30.34 42.65 30.00 20.62 57.31 

 

     
Figure 2. Predicted point clouds based on different support radius for eigen-based features (left: ground truth, 

middle: prediction with the highest mIoU, right: prediction with the lowest mIoU). 

 

In the evaluation made according to the size of the training data set, it was concluded that 30000 points were the most 

appropriate parameter. The highest F1 score, mIoU and accuracy values were obtained with the number of 30000 

points as 31.08%, 21.85% and 62.88%, respectively. The lowest metrics were obtained, except for the recall at 10000 

points. From 10000 to 30000 generally metrics tended to increase but decreased at 40000 points. The reason for this 

is that the training set is out of balance, as there are less samples at 40000 points in some classes. The results of the 

experiment to determine the appropriate training set are presented in Table 3. Predicted point clouds are shown in 

Figure 3. 

 

Table 3. Evaluation results based on different training sample for each class. 

Number of points Precision Recall F1 Score mIoU Accuracy 

10000 30.34 42.65 30.00 20.62 57.31 

20000 31.06 42.01 30.27 21.05 59.25 

30000 30.82 42.58 31.08 21.85 62.88 

40000 30.61 40.77 30.43 20.90 57.10 

 

 

     
Figure 3. Predicted point clouds based on different training sample for each class (left: ground truth, middle: 

prediction with the highest mIoU, right: prediction with the lowest mIoU). 

 

Considering the mIoU value, the mIoU increases as the hidden layer grows in size. The highest F1 score value was 

obtained at 200 with 31.08%. Depending on the dataset structure and hardware features, the hidden layer size can be 

selected. Especially when the accuracy is examined, 200 hidden layer sizes with 62.88% accuracy are superior to 

other hidden layer sizes. The results for the hidden layer size dimension are presented in Table 4. Predicted point 

clouds are shown in Figure 4. 
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Table 4. Evaluation results based on different hidden layer size of MLP. 

Hidden Layer Size Precision Recall F1 Score mIoU Accuracy 

50 30.47 41.37 29.84 20.45 54.92 

100 30.07 40.91 30.33 21.00 58.14 

150 30.55 40.71 29.85 20.51 55.62 

200 30.82 42.58 31.08 21.85 62.88 

 

 

     
Figure 4. Predicted point clouds based on different hidden layer size of MLP (left: ground truth, middle: prediction 

with the highest mIoU, right: prediction with the lowest mIoU). 

 

3. CONCLUSIONS 

 

In this study, an experiment on point cloud semantic segmentation and appropriate parameter selection using the MLP 

method is presented. Considering the importance of mobile LiDAR point clouds for the environmental sensing of 

autonomous vehicles, there is a need for high-accuracy information extraction in such point clouds. In future studies, 

different deep learning and machine learning methods can be used besides MLP. In addition, filtering methods can 

be developed to remove moving objects causing noise in mobile LiDAR point clouds to improve accuracy. 

Considering the rapid rise of artificial intelligence studies in every field today, artificial intelligence approaches have 

an important potential for point cloud semantic segmentation. 
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