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ABSTRACT: Many state-of-the-art studies are being conducted on environmental monitoring with computer vision 

applications. Remotely sensed images are widely preferred data in this regard. The body of your abstract begins here. 

Many open data sets have been generated in this area, and multi-class classification is carried out automatically with 

the studies carried out. Behalf of human interpretation, using machine learning algorithms provides economic, time, 

and robust utilities. UC Merced Land Use dataset is one of the most common datasets, including a wide variety of 

classes in the meaning of land use. In the study, seven different deep learning models are conducted to the UC Merced 

Land use dataset, and multi-class land use classification results have been compared quantitatively. The algorithms 

yielded higher than %95 accuracies. The highest overall accuracy was obtained using the DenseNet 121 model, and 

the worst score was obtained with Alexnet. In several test images, using the SqueezeNet model provided more 

successful predictions for several classes. In future studies, domain-shift applications can strengthen the studies for 

more expansive areas. 

1. INTRODUCTION

Remotely sensed data is one of the primary sources for computer vision tasks. Computer vision applications for earth 

observations have various studies such as aerial scene classification (Zheng et al., 2019; Bi et al., 2020; Dede et al., 

2018) object detection (Atik and Ipbuker, 2020; Sezen et al., 2022; Cepni et al., 2020), semantic segmentation [Duran 

et al., 2021; Atik et al., 2021; Atik and Ipbuker, 2021). Scene classification can be grouped under three main groups, 

as shown in Figure 1. The binary classification has two classes, and images can refer to only one of them. In multi-

class classification, there are many classes, and images are labeled as one of the labels. Therefore, the images can 

have more than one label for multi-label classification, and the class number is more than two. Datasets containing 

aerial scenes can be used for multi-class or multi-label classification. Additionally, classification type depends on the 

scope of the dataset and category type. 

Figure 1. Binary, Multi-Class and Multi-Label Classification 

In this study, the application of multi-label classification with different Convolutional Neural Networks (CNNs) was 

carried out. UC Merced Land Use (Yang and Newsam, 2010), a high-resolution aerial images data set, is used for this 

purpose.  

2. DATA AND METHODOLOGY

The UC Merced dataset contains 100 images (256 x 256) for each class belonging to 21 classes. The sample images 

of the class are shown in Figure 2. In general, the dataset includes many artificial structures and natural classes. For 

example, the residential class is split into three classes in the UCM dataset. 
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Figure 2. Images of UC Merced Data Set Classes (The image is adapted from (Özyurt et al., 2020)). 

 

The aerial images in the dataset also contain more than one class. Therefore, the total number of classes in the dataset 

is various. The total number of labels of images is shown in Figure 3 per class. Several multi-label samples are shown 

in Figure 4. 

 

 
Figure 3. UC Merced data set class counts as multi-label classification 
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Figure 4. Multi-label classification samples of UC Merced Land Use data set 

 

 

 
2.1 AlexNet 

 
Krizhevsky et al. (2012) trained DCNN 1.2million high-resolution images for 1000 different classes in the ImageNet 

LSVRC-2010 contest as AlexNet. 

 

 
Figure 5. An illustration of AlexNet architecture [12] 

 
The architecture has a local normalization scheme that aids generalization (Equation 1). Here 𝑎𝑥,𝑦

𝑖  is the neuron's 

activity and kernel i is at the position (x, y). Applying ReLU (Rectified Linear Unit) nonlinearity and  𝑏𝑥,𝑦
𝑖  is the 

response-normalized activity. In the expression, k=2, n=5, α=10, and β=0.75. 

 

                                                       (1) 

javzandulam.b
Placed Image



The effectiveness of the architecture is also verified on the CIFAR-10 dataset. 

 

2.2 ResNet 

 

In Figure 4, the residual learning scheme is shown for ResNet architecture. H(x)I the formula is F(x)=H(x)-x used in 

the deep residual learning framework. 

 

 

Figure 4. Residual learning: a building block [13].  

 

In the formulation of Ӻ(×) +× is a feedforward neural network that has shortcut connections.  

y= Ӻ, {𝑊𝑖})+× defines the building block, and the dimension of x and Ӻ must be equal. x and y refer to the input and 

output vectors of the layers. F(x, {Wi}) refers to multiple convolutional layers (He et al., 2016). 

 

2.3 DenseNet 

 

Huang et al. generated a CNN as Dense Convolutional Network (DenseNet). It connects each layer to other layers 

with a feedforward type (Figure 5). The network has several advantages, and they evaluate it in four competitive trend 

benchmarks: CIFA-10, CIFAR-100, SVHN, and ImageNet (Huang et al.,2017) 

 

Figure 5. An illustration of the 5-layer dense block with a growth rate of k = 4 [14]. 

2.4 SqueezeNet  
 
Iandola et al. (2016) proposed a method that provides AlexNet level accuracy on ImageNet using fifty times fewer 

parameters. In addition, the network has several advantages about being smaller CNNs with less communication 

phase at training, requiring diminished bandwidth, and being proper even with less capacity of memory [15]. In the 

literature, there are other versions, such as SqueezeSeg (Wu et al., 2018)for semantic point cloud segmentation tasks 

(Atik and Duran, 2022). 
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3. RESULT AND DISCUSSION 

 
Pre-trained DL models were used in the training phase. The epoch number was selected as ten, determined 

experimentally, and it is the same for all CNN models. Error rate and time are observed for each model. 30% of the 

datasets were split randomly as test data. After the testing phase, the network results are compared with evaluation 

metrics for the classes by mean precision, recall, and F1 score. In Equation 2, overall accuracy is explained. The 

equation includes TP: true positive, FN: false negative, FP: false positive, and N: total classification number. 

 

                                                                    𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁+ 𝑇𝑃

𝑁
                                                     (2) 

 
SquuezeNet and ResNet models have been used in the experiments as different versions. In addition, AlexNet and 

DenseNet CNN models are used for multi-label aerial scene classification of the UC Merced Land Use data set.  

 
Table 1. Overall Accuracy of CNN Models 

Model Overall Accuracy 

AlexNet 95,18 

SquuezeNet 1_1 95,73 

SquuezeNet 1_0 96,01 

ResNet18 96,18 

ResNet34 96,39 

ResNet50 96,77 

DenseNet121 96,89 

  

The highest performance has been obtained with DenseNet121 with %96,89 overall accuracy. Moreover, the worst 

overall accuracy has been obtained with AlexNet with %95.18. The overall accuracy of CNN models is shown in 

Table 1 quantitatively. Also, the accuracy comparison is shown in Figure 6. 

 

   
Figure 6. Overall Accuracy Graph of the CNN Models 

 

In future projections, other backbone models of these CNNs can be used for these data sets for multi-label 

classification purposes. Also, domain-shift applications can be performed while training in one data set and testing in 

another data source. These studies help enhance the Sustainable Development Goals (SDGs) of the United Nations 

(UN) for understanding aerial images through artificial intelligent approaches. 
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