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Abstract

Remote sensing scene classification aims to label images acquired by sensors with a set of
semantic labels. With the increasing spatial resolution of sensors, scene classification has
gained immense importance over pixel classification in Land Use Land Cover Classification.
Deep learning techniques in remote sensing image scene classification have drawn
remarkable attention with a looming paradigm shift towards data availability and high
computational GPUs. However, inadequate training samples and imbalanced class
distribution in land cover classes are the significant challenges that question classification
accuracy. In this context, saving time for human annotation at a minimal loss with sufficient
accuracy is imperative. High-resolution satellite image scene classification has an inherent
class imbalance problem. Class imbalance inherits bias in the model. The model gets more
confident in predicting the majority of scenes.

Further, the impact of class imbalance on classification performance is detrimental as the
probability of misclassifications increases manifold. Hence, this research elucidates the novel
idea of using Class Focal Loss Optimization with differential weight decay assignment to
classes in an imbalanced dataset. Also, supervised classifiers lead to extensive overfitting in
the dense layers of the network due to excessive parameters in case of inadequate samples.
Hence, pre-trained Residual Nets with deeper connections have been proposed to extract pre-
trained activations for training the model. For experimentation, we have used Sentinel — 2
satellite images. The experiments were performed on the RGB bands of the EuroSAT dataset.
This dataset is benchmarked for the EuroSAT dataset using Convolutional Neural Networks.
This novel satellite image dataset comprises 27,000 labeled images with ten different land use
and land cover classes. Results corroborated by the experiments illustrated improved class
accuracy and fewer misclassifications per class. Accurate predictions have been calculated
per class to indicate improvement in class accuracy. To the best of author’s knowledge, no
prior literature addressed the issue of class imbalance and misclassification in remote sensing
scene multiclass classification using Class Focal Loss Optimization.

Introduction

Supervised remote sensing scene classification in high-spatial-resolution images is an
important research topic. Remote sensing scene classification maps images acquired by
sensors with a set of semantic labels [1][2]. Inadequate training samples and imbalanced class
distribution in land cover classes are significant challenges that question classification
accuracy in scene classification[1-4]. Also, it is costly to manually label the satellite images
because of the huge size of the imagery. The analysis is further challenging due to distortions
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caused by the sensors and atmospheric conditions [1]. Most existing satellite mapping efforts
are manual, time-consuming, and give erroneous results. It requires 6-8 hours to map the
disasters after satellite images availability manually. Further spatial and spectral variability in
resolution makes the automated process more complex. In this context, saving time for
human annotation at a minimal loss with sufficient accuracy is imperative [1-4].

Deep learning techniques in remote sensing image scene classification have drawn
remarkable attention with a looming paradigm shift towards data availability and high
computational GPUs [2-4]. Satellite scene images are rich in spectral and spatial information
hence, the choice of feature representation is essential. Satellite image scene understanding
has gained momentum, focusing on learning spectral, spatial, and hierarchical features for
thematic classification. Supervised classifiers overfit at dense layers due to numerous
parameters when representative samples are insufficient. In this context, deep Pretrained
Convolutional Networks can leverage feature representations from data. These networks have
scalable architectures and can learn high discriminative features contributing to classification
accuracy [1-4].

Literature demonstrated many exemplary works on pre-trained deep networks and their
importance in classifying satellite images [1-11]. The initial layers of deep networks consist
of generic representations. The pre-activations obtained from initial network layers trained on
millions of images can be used to learn a model and generalized to cross domains. This
concept is called transfer learning [2-4]. Research findings in the literature corroborated
increased accuracy and reduced computational parameters with exceptional feature extraction
capabilities using transfer learning techniques [1-11]. In [5], the author described the fusion
of features from different layers of pre-trained networks and illustrated the extraction of
weights from the last layers. Naushad et al. [6] illustrated that Pretrained models like VGG 16
and Residual Networks (Resnet) enhance classification accuracy with fine tuning and data
augmentation techniques. In [7], the author compared different transfer learning techniques
on sentinel 2 EuroSAT dataset. In [14], author addressed the issue of class imbalance using
focal loss optimization in high resolution satellite images.

Class Imbalance

High-resolution remote sensing image scene classification has an inherent class imbalance
problem. Class imbalance can be illustrated as an imbalance in gradient norm distribution.
Class imbalance inherits bias in the model. In minority classes, the learned representations
are forgotten when weights are updated. So, the scenes in minority and majority classes have
different degrees of attenuation [13-16].

The majority class instances dominate gradient descent. The model gets more confident in
predicting the majority scenes instead of the minority classes. Further, the impact of class
imbalance on classification performance is detrimental as the probability of misclassifications
increases manifold [12]. Cross Entropy is the significant loss function used in deep learning
algorithms. But this loss function fails to give more attention to minority examples [12].
Focal loss optimization has been used in this research to alleviate this issue. State of the art
primarily focused on increasing overall accuracy, and less strenuous efforts were made for
misclassifications and model calibration. As per the insights from the literature, no prior work
has tried to alleviate imbalance and misclassification in remote sensing scene classification
with Focal Loss Optimization [13-16].
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1.2 Problem Formulation

2.

2.1

Given, a satellite image, I, consisting of scenes s;, as a tensor.

Let a set of discrete labels Y = {y1, y>...)x}, here k is the total number of discrete labels,

Let D be the training set where, Dirain = S[i] = {So, S1...sn} and d be the dimensional feature
vector [ao, a1......an], Vs; € D, then the classification problem can be defined as

fis—y 1)

Proposed Model
State of the Art Focal Loss Function

Tsung-Yi et al. [13] proposed Focal Loss for model calibration in the dense object
detection approach in imbalanced classes. Focal Loss optimization gives weight to
minority instances to improves the class's accuracy. Differential weight decay assigned to
classes can improve accuracy in imbalanced datasets [12]. This work has extended this
concept for multiclass classification.

If the predicted output of the model for the classes is z = [z, z, ... z¢]T ,where C is the
number of classes. SoftMax function calculates the probability distribution on all classes
with the assumption of mutually exclusive classes [12].

exp(z;) (2)

where, Vi € {1,2...C}

Given, a scene with class label y, then SoftMax Cross-Entropy (CE) Loss is written as

exp(zy) )
CE(@y)=-log| =—2*—
S el

Cross Entropy is the significant loss function used in deep learning algorithms. But this
loss function fails to give more attention to minority examples.

Since the Cross-Entropy Loss function does not work well with imbalanced data, a
modulating factor (1 — p)Y is added to the CE Loss for focusing on misclassified or
difficult samples [12-16].

2.2 Class Focal Loss
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Focal Loss gives weight to minority and misclassified instances and improves the class's
accuracy [12-16]. Class focal loss emphasizes that the weight decay coefficients for
classes should be different. The underlying concept accentuates assigning greater weight
decay to easy classified samples and smaller to easy examples of minority classes [12].

Class Focal Loss Function is

CFL (z,y) = -(1-pi) Y& log(pi) 4

where, v, is @a modulating factor, By, represents the proportion of samples with the class
label, y [12].

Ny )

=c
N .
zj:l J

By = gzl IBC = 11

Here, N; denotes the quantity of samples in category j
2.3 Architecture of proposed Model Residual Nets with Class Focal Loss Optimization

For spatial learning of hierarchical feature vectors, Resnet 18 [13] has been considered.
The probabilities assigned by the SoftMAX Function is then optimized through Focal
Loss [15].

Spatial Learning

'-i:"\\ > Class
% Imbalanced
Data Augmentation i Learning Fully Connected
!4 _— > Layer

Probablity (p)

Focal Loss

Figure 1. Framework for Scene Classification
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3. Experimental Design

3.1 Experimental Setup and Dataset Description

Keras Framework has been used for model training. Experiments were performed in
NVIDIA Tesla K80 GPU available with Google Colab Environment on publicly available
Sentinel-2 satellite EuroSAT dataset. EuroSAT Dataset is the first patch-based LULC
dataset. The experiments were performed on the RGB bands. It is benchmarked for the
EuroSAT dataset using Convolutional Neural Networks [7-8][17]. This comprises 27,000
labeled images with ten different Land use and Land cover classes. The dataset is
georeferenced and is based on open and accessible Earth observation data [17].

Tablel Class Distribution of Dataset

Class Class Name | Number
Number of

Samples

1 Annual Crop 3000

2 Forest 3000

3 Herbaceous 3000

Vegetation

4 Highway 2500

5 Industrial 2500

6 Pasture 2000

7 Permanent 2500

Crop

8 Residential 3000

9 River 2500

10 Sea Lake 3000

\H

Annual Crop Forest

|
|

River Sea Lake

Figure 2. Sample image patches in the proposed EuroSAT Dataset
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3.2 Experimental Parameters and Results

The proposed model is evaluated for performance metrics accuracy and F1 score.
Model performance was further enhanced using data augmentation techniques,
rotation, and scale. The proposed approach reduces misclassifications and improves
class accuracy. The experimental settings of different hyperparameters are given in
Table 2. Experiments were conducted with different hyperparameters, batch sizes, and
learning rates and vy.

Table2 Hyperparameters for training the model

Hyperparameters Values In Experiments
Batch size 64
Learning Rate 0.0006
Dropout Per layer .25

Y

0.5(Optimal Value)

Data Augmentation

Rotate, Scale

Table3 Class Accuracy and True predictions with Focal Loss Function

Class Y _true Label count Class
predictions Accuracy
Annual Crop 1400 1500 0.9333
Forest 1498 1500 0.9986
Herbaceous 1393 1500 0.9286
Vegetation
Highway 1200 1250 0.9600
Industrial 1185 1250 0.9480
Pasture 980 1000 0.9800
Permanent 1199 1250 0.9592
Crop
Residential 1496 1500 0.9973
River 1190 1250 0.9520
Sea Lake 1400 1500 0.9333

Table 4 Class Accuracy and F1 Score on RGB Bands of EuroSAT Dataset
with Cross Entropy Loss Function

Class Class Name Number of | Class F1 Score
Number Samples | Accuracy
1 Annual Crop 3000 0.9000 0.8840
2 Forest 3000 0.9180 0.9130
3 Herbaceous 0.9550 0.9540
Vegetation 3000
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4 Highway 2500 0.9750 0.9659
5 Industrial 2500 0.9888 0.9780
6 Pasture 2000 0.9540 0.9630
7 Permanent 2500 0.9528 0.9329
Crop
8 Residential' 3000 0.9986 0.9800
9 River 2500 0.9576 0.9476
10 Sea Lake 3000 0.9280 0.9180

Fig. 3 Convergence of Focal Loss Function with epochs

3.3 Analysis

This section analyses the results presented in the previous section. State of the art
primarily focused on increasing overall accuracy, and less strenuous efforts were made
for misclassifications and model calibration. The present model achieves better accuracy
on the EuroSAT dataset with RGB bands. The proposed technique can be a good choice
for LULC scene classification in case of inadequate training samples.

Misclassifications and Focal Loss

Lack of inadequate samples and imbalance in classes in training data has a negative
impact on classification performance. The loss function in the Deep learning framework
can enhance accuracy and reduce misclassification without altering the model
network[12]. Hence, here Focal loss optimization is used instead of the Cross-Entropy
Loss function assigning varying weight decay to different samples. Table 4 illustrates
accurate predictions in all the classes. There were many misclassifications in the results;
many ‘sea lake ‘examples have been misclassified as Forest.
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Figure 4. Misclassified Sample Image

This is an ‘Annual Crop’ example misclassified as ‘Permanent Crop.’

Focal Loss reduced misclassifications and increased class accuracy.

4. Conclusions and Future Research Directions

This research proposes a Class Focal Loss optimization with deep networks instead of a
Cross-Entropy Loss Function. This function accentuates the concept of assigning
differential weight decay to different classes. This idea will be useful in case of
imbalanced datasets. Experiments were evaluated on Sentinel — 2 benchmark dataset for
Convolutional networks. Results corroborated that this loss function optimization
reduces misclassifications and enhances class accuracy.

Further, pre-trained networks mitigate overfitting at the dense layers in the case of
supervised classifiers. No prior literature discussed and analyzed the LULC scene
multiclass classification with focus on model calibration, misclassification, and class
imbalance. Future investigations will compare different class imbalance methods with
loss function optimization.
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