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ABSTRACT: Invasive alien plants (IAP) usually threaten the ecosystem of the invaded area. Because in-situ survey 

at a large-scale region with complex topography for IAPs is a daunting task, it is bound to rely on 3S technology for 

providing appropriate management strategies. Unmanned aerial vehicle (UAV) is critical to overcome 

above-mentioned difficulties; it can also make up for the shortcomings of the lack of mobility and autonomy in 

spaceborne/airborne systems. We used UAV to acquire images of Spartina alterniflora (smooth cordgrass, SC) and 

Mikania micrantha (bitter vine, BV) based on the critical dates in phenological cycles of them. We also included 

normalized difference vegetation index (NDVI) and green normalized difference vegetation index (GNDVI) to 

enhance vegetation features, in order to understand whether it can improve the classification accuracy. Maximum 

likelihood classifier (MLC), support vector machine (SVM), and random forest (RF) were used to perform species 

classification. The main results show that (1) UAV is sufficient to fully master the critical phenological traits of target 

species. (2) Multi-temporal images can promote the accuracy of classification. (3) The combination of NDVI, GNDVI 

with the pure spectra did not significantly improve the accuracy (4) The result of the second validation comparison of 

SC, the area estimated by SVM was the closest to the in-situ measured. In conclusion, we confirmed that UAV can 

precisely capture critical phenological traits of IAPs and more than enough to identify scattered IAPs. It is far more 

beneficial than done by spaceborne and airborne. Multi-temporal images can indeed promote the accuracy of the 

classification. The follow-up study will use UAV to obtain multi-temporal images to more accurately grasp 

phenology, and incorporate deep learning for perspective analysis. Not only estimate the distribution of IAPs but also 

return from the “metaverse” virtual Earth to the physical Earth for validation. 

1. INTRODUCTION

Invasive alien plants (IAP) usually have a serious threat on the ecosystem of the invaded area. In recent years, under 

the background of transportation reform and globalization, frequent international trade and tourism have accelerated 

IAPs’ spread and lengthened their diffusion distance, which has become a universal ecological issue (Hulme, 2021). 

The IAPs that have invaded Taiwan Island for many years are widely distributed. They can be seen in green belts in 

the suburbs, and also in hills or inaccessible places. Nevertheless, in-situ survey at a large-scale region with complex 

topography for IAPs is a daunting task. Not only ones must be aware of potential hazards, but also it is hard to acquire 

sufficient on-site samples for species distribution modeling (SDM). Therefore, it is bound to rely on 3S technology 

for providing appropriate management strategies. Specifically, we must monitor large-scale vegetation with the 

contactless, macroscopic, dynamic, interdisciplinary, and high-efficiency advantages of remote sensing (RS) 

technology (Zeng et al., 2022). Then through the global navigation satellite system (GNSS) to obtain the precise 

location intelligence (LI), linking the digital Earth and the physical Earth, we can enter the geospatial information 

system (GIS) to accurately overlay various layers for integrated analysis. 

Phenology is defined as the changes in life cycle of an organism. For plants, it includes germination, flowering, 

defoliation, fruiting with seasonal variations (Vilhar et al., 2013; Warren et al., 2021). This will transform plants’ 

physiology or morphology i.e. appearance, and produce a unique spectral pattern as it transforms. Therefore, we can 

make good use of RS to capture this key, and use machine vision to automatically analyze the “appearance” in images. 

In this way, not only the physiological conditions of plants can be monitored, but also the spatial distribution potential 

of IAPs can be accurately grasped. Vegetation indices (VI) are the ratio between spectral bands from RS in terms of 
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plants that can be used to enhance the features of vegetation. They are one of the indicators for analyzing the 

phenology of plants and can be used to monitor vegetations (Zeng et al., 2022). 

 

IAPs are widely and fragmented patches in Taiwan Island. However, most studies on IAPs have been using moderate 

resolution spaceborne and airborne images. Subsequent analysis will be ineffective for the following reasons: (1) 

These two systems lack autonomy and mobility, so they cannot accurately grasp the characteristics of plants. In 

addition, the images are easily obscured by clouds, so they cannot correctly extract IAPs from surrounding plants. (2) 

The image resolution is insufficient, and the LI measured by GNSS is inaccurate. It is difficult to accurately calculate 

the distribution area of IAPs. In addition, matching with pixels is challenging. Not to mention how moderate 

resolution imagery can describe the finer details of narrow IAPs. 

 

Recently, the burgeoning drone or unmanned aerial vehicle (UAV) has gradually become the mainstream of 

ecological investigation. As a vehicle, UAV offers unparalleled spatial and temporal resolution. Allow researchers to 

fly with higher flexibility. In view of this, we assessed the utility of multi-spectral UAV in sensing and mapping of 

two IAPs, Spartina alterniflora (smooth cordgrass, SC) and Mikania micrantha (bitter vine, BV), in central Taiwan 

Island. The UAV flight was based on the critical dates in phenological cycle of the two IAPs and acquired 

multi-temporal images to analyze their spatial distribution. The objectives of this study are to (1) Does UAV closely 

integrate the relationship between phenology and spectral pattern to correctly extract IAPs? (2) Does using VI 

improve classification accuracy? (3) From the quantitative data of area measurement, discuss the distribution area of 

SC estimated by each algorithm in “virtual Earth” and in-situ measured in “physical Earth”, and compare the 

differences and the correct overlap rate. 

 

2. STUDY AREA AND MATERIALS 

 

2.1 Study Area 

 

This study took two regions in central Taiwan Island as the study area. Yangs Tsu (YT) is located in Lukang 

Township, Changhua County at latitude 2,665,500 m to 2,665,750 m and longitude 192,250 m to 193,080 m, 

encompassing an approximate area of 20.75 ha (Fig. 1). YT is an intertidal close to the estuary with rich ecology; 

most of which are mudflats with extremely soft geology. It is also one of the areas with the largest SC population. At 

YT, we extrapolate to the whole area using the west plot. Another study area in Zhushan (ZS) Township, Nantou 

County at latitude 2,616,965 m to 2,617,070 m and longitude 217,070 m to 217,191 m, encompassing an approximate 

area of 1.27 ha (Fig. 1). ZS is a deserted open space with complex and steep terrain, many plants grow, and there may 

be a lot of BV. The land covers of YT and ZS were determined using UAV images and in-situ surveys data. All 

coordinate systems are TWD97 TM2. 

 

2.2 Target species 

 

Spartina alterniflora (smooth cordgrass, SC) is a perennial herb of the family Poaceae which is native to the salt 

marshes along the Atlantic coast of the Americas. Its rhizomes are well-developed and dense, which can penetrate 

deeply into the soil. SC has invaded Taiwan Island for more than ten years. Because of the strong fecundity and 

adaptability of SC, it forms a high-density single-species community in the intertidal zone, and has led to serious 

degradation to the ecosystem and biodiversity (Hwang, 2011; Yang, 2016; Tian et al., 2020). SC has distinct 

phenological traits. The growth period is from April to October, and it will present a green appearance; from August 

to December, it will gradually wither and become brown (Fig. 2). 

 

Mikania micrantha (bitter vine, BV) is a perennial creeper of the family Asteraceae which originates in South 

America. This species has long been known as a disrepute invader around the world (Holm et al., 1977). BV often 

occurs in low-altitude areas, especially in abandoned tea plantation or orchard, abandoned farmland, betel palm 

orchards, artificial facilities or sewage ditches. Seriously, BV entangles or clings to other plants, preventing other 

plants from photosynthesizing, leading them to weakness and death. Due to the widespread of this species, there are 

harmful environmental and economic impacts. According to Kuo et al. (2002) observed the phenological traits of BV 

in Taiwan Island, its leaves unfold in early spring, and dry plants coexist with green leaves. Full of green leaves from 

June to October, similar to ordinary plants. It enters the flowering period in November and is full of white flowers; it 

withers in winter, and the plants are dry and tawny in January (Fig. 3). The white flowers in autumn and the tawny 

appearance in winter are the key to extracting BV from surrounding plants in summer. 
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Figure 1. Study area: (a) Yangs Tsu and (b) Zhushan in central Taiwan Island. 

 

 
Figure 2. The phenological traits of SC. 
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Figure 3. The phenological traits of BV. 

 

3. METHODS 

 

3.1 UAV image acquisition 

 

A DJI P4 Multispectral UAV (hereinafter referred to as P4M) was employed for acquiring IAPs color images. The 

sensing bands of the P4M are blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 ± 16 nm), 

and near-infrared (840 ± 26 nm). The images generated by the P4M are recorded in five bands with a 16-bit computer 

code scale (65,536), that is, the images generated by each band are divided into 65,536 gray levels from black to white 

(0–65,535). In addition, it is also equipped with real time kinematic (RTK) positioning function, shooting using the 

e-GNSS RTK positioning system provided by Center for Land Surveying and Mapping in Taiwan, through the 

wireless network to generate a virtual reference station (VRS), with RTK VRS for positioning. 

 

UAV flight missions are performed based on the phenology of the two IAPs. At YT, we acquired bi-temporal images 

of SC on May 19 and November 7, 2021. At ZS, we acquired multi-temporal images of BV on January 27, April 6, 

August 23 and November 13 in 2021. The overlap rate of all missions remained at 80% / 70%; flying height remained 

at 30 m. 

 

3.2 Field surveys 

 

Even with the vast amount of data available with UAVs, we still need ground survey data. However, measurements in 

the intertidal zone or in the mountains cannot be carried out by means of transportation, but can only on foot. We used 

the Trimble R12 GNSS receiver to measure the area of one of the SC communities, and measure the coordinates of 

the ground control points (GCP) and check points before the flight missions. Using the LI as a bridge, we closely 

combine “air” and “ground”. In this way, we can enter the metaverse “virtual Earth” for analysis and modeling 

“physical Earth.” 

 

3.3 Data Preprocessing 
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First, the original image taken by UAV needs to undergo orthographic corrections. We used Pix4Dmapper based on 

the TWD97 TM2 coordinate system to perform coordinate transformation and mosaic multiple images to produce 

orthorimages, and import GCPs to correct positioning errors in the process. Second, this study also used Erdas 

IMAGINE image processing software to perform relative radiation correction with histogram matching (HM) method 

to eliminate the problem that the reflection value is different from the actual value caused by the change of the 

external illumination angle and the sensor itself. Furthermore, we used ArcGIS 10.3 to combine different 

phenological images of SC and BV. It is helpful to know the most critical phenological events. 

 

3.4 Vegetation indices (VI) 

 

Tucker et al. (1979) were the first to use normalized difference vegetation index (NDVI) to measure green plant 

biomass. It is the most commonly used VI in RS. NDVI is able to monitor changes in vegetation, mainly using the 

difference between the near-infrared (NIR) channel and the red channel. The value of NDVI is between -1 and 1, and 

the closer to 1, the more vegetation cover. Its equation is defined by:  

 

NDVI = (NIR－Red)/( NIR＋Red)                                                             (1) 

 

Compared with NDVI, green normalized difference vegetation index (GNDVI) is more sensitive to chlorophyll. It 

uses green channel instead of red channel. Like NDVI, GNDVI values range from -1 to 1. Because the saturation 

point is higher than NDVI, it can make up for the problem of its saturation. As for how to calculate GNDVI, the 

equation is as follows (Gitelson et al., 1996):  

 

GNDVI = (NIR－Green)/( NIR＋Green)                                                     (2) 

 

We calculated these two VIs with the raster calculator in ArcGIS and classified them with every pure spectra and 

combined images. 

 

3.5 Image classification 

 

This study selected training samples and classify them based on the field survey data and orthoimages. YT can be 

classified as SC, mudflat, herbs (evergreen), road, river. ZS can be classified as BV, hardwood, herbs and ferns, road, 

litter or soil, bamboo. Then we reclassified them as SC, non-SC; BV, and non-BV. Then, maximum likelihood 

classifier (MLC), support vector machine (SVM), and random forest (RF) were used to perform IAPs recognition and 

classification. 

 

We take MLC as the traditional supervised classification algorithm, and SVM is implemented in ENVI 5.3, both with 

default settings. SVM adopts One-Against-One method in ENVI 5.3, and we will try to test One-Against-All and 

adjust its “gamma” parameter and “cost” parameter in the future. We tuned the hyperparameters of RF. The 

“maximum depth” was set to 5; “minimum samples split” was 30; and “minimum samples leaf” was 15. 

 

3.6 Assessing classification accuracy 

 

We used the split-sample validation approach to extract 1,000 samples from each training sample by stratified 

random sampling, and then selected 2,000 samples from a completely independent test sample for validation. This 

choice is reasonable as it represents a typical condition of real operational applications (Dalponte et al., 2008), i.e., 

spatial extrapolation to a large area with a small amount of training data. We used the kappa coefficient of agreement 

and overall accuracy (OA) as accuracy evaluation indicators. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Gray-level values in two IAPs 

 

This study found that SC has a “plant” spectral pattern during the growth period in May, and a similar “soil” spectral 

pattern during the withering period in November. The red band reflection of the former is significantly lower than that 

of the latter, forming a “trough” zone; the NIR band reflection of the former is significantly higher than that of the 

latter, forming a “plateau” zone relatively (Fig. 4a). 

 

When BV was full of clusters of white flowers in November, the gray level values in the five bands was significantly 
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higher than the spectral pattern of “plant” and “soil” in the other three months (Fig. 4b). The spectral pattern of this 

phenological feature can clearly extract the "main" target species from the surrounding plants (especially herbs and 

ferns) in the same period, highlighting the critical identification effect of this phenology. Therefore, this study first 

demonstrate that UAV is sufficient to fully master the critical phenological traits of target species. 

 

 
Figure 4. Line chart of the average gray-scale values of the two IAPs in different phenological periods. 

 

4.2 Image classification results 

 

For classification, the use of multi-temporal images with critical phenology could reduce confusion. The 

classification results of the three algorithms applied in YT prediction are shown in Table 1. Using single-temporal 

image of the growth period had lower accuracy due to SC confusion with herbs. The single-temporal image in the 

withering period could distinguish evergreen herbs and SC, which improved the accuracy, but there was still 

confusion between SC and mudflat. When used bi-temporal images, the kappa value and OA of the three algorithms 

were significantly improved compared with those using only single-temporal images. Among them, the first two 

values of SVM were the highest, and the improvement was also more. Its kappa value was increased by 30%, and OA 

was increased by 24%. However, the two evaluation values of the three algorithms were less than 0.85, which was 

mainly due to the confusion of mudflat, road and river extrapolated from another plot. 

 

Table 1. Classification accuracy of SC from single-temporal and bi-temporal images.  
MLC SVM RF 

kappa OA kappa OA kappa OA 

growth period (5/19) 0.52 0.62 0.48 0.58 0.63 0.70 

withering period (11/7) 0.63 0.71 0.64 0.71 0.71 0.76 

bi-temporal (5/19, 11/7) 0.75 0.80 0.78 0.82 0.76 0.81 

 

As for the classification results of BV, it was found that the images in the withering period could distinguish the 

surrounding evergreen plants. The green leaves period could distinguish artificial facilities due to the characteristics 

of plant spectral pattern, but it was easy to be confused with the surrounding herbs. The images in puberty could 

distinguish almost all classes because of the particularly obvious white flowers. The classification results of the three 

algorithms in different combinations of images are listed in Table 2. The use of bi-temporal images improved slightly, 

while the third-phase images greatly improved the classification accuracy, kappa value was increased by 49%, and 

OA was increased by 41%. However, after the images of the full flowering period in November were added to each 

combination, the two indicators improved most significantly. It highlights the importance of full-flowering images in 

the extraction of BV. 
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Table 2. Classification accuracy of BV from each image combination. 

 MLC SVM RF 

 kappa OA kappa OA kappa OA 

single-temporal (1) 0.36 0.47 0.35 0.46 0.65 0.71 

single-temporal (4) 0.37 0.48 0.34 0.45 0.64 0.70 

single-temporal (8) 0.55 0.62 0.55 0.62 0.72 0.77 

single-temporal (11) 0.72 0.76 0.73 0.78 0.79 0.82 

bi-temporal (1, 4) 0.52 0.60 0.47 0.56 0.68 0.73 

bi-temporal (1, 8) 0.59 0.66 0.60 0.67 0.72 0.77 

bi-temporal (1, 11) 0.78 0.81 0.77 0.81 0.81 0.84 

bi-temporal (4, 8) 0.61 0.68 0.62 0.68 0.73 0.77 

bi-temporal (4, 11) 0.74 0.78 0.75 0.79 0.80 0.84 

bi-temporal (8, 11) 0.81 0.84 0.82 0.84 0.81 0.84 

three-temporal (1, 4, 8) 0.62 0.69 0.66 0.72 0.73 0.78 

three-temporal (1, 4, 11) 0.78 0.82 0.77 0.81 0.82 0.85 

three-temporal (1, 8, 11) 0.76 0.80 0.81 0.84 0.81 0.84 

three-temporal (4, 8, 11) 0.81 0.84 0.83 0.86 0.82 0.85 

four-temporal (1, 4, 8, 11) 0.80 0.83 0.82 0.85 0.82 0.85 

* Numbers in the table represent months 

 

Since the improvement of SVM was the most obvious, we continued to use it to discuss the results. Thematic maps of 

SC and BV shown in Figure 5 and Figure 6. Compared with UAV images, using only single-temporal images, both 

IAPs were misclassified. When SC used bi-temporal images, the situation of omission could be significantly 

improved (Fig. 5). BV was largely confused with the surrounding herbs in the single-temporal image in April; there 

was a slight improvement using the bi-temporal image. When adding a November image full of white flowers, the 

aforementioned problem was greatly improved (Fig. 6). It is crucial to show the November images again. 

 

 
Figure 5. SC thematic map (take SVM as an example). 
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Figure 6. BV thematic map (take SVM as an example). 

 

4.3 Classification results of pure spectra combined with VIs 

 

Since the results of the SVM were the best in the previous paragraph, this paragraph will discuss the results of the 

classification for SVM. The classification accuracy of pure spectrum, superimposed NDVI, and GNDVI of different 

phenological combinations of the two IAPs is shown in Table 3 and Table 4. The combination of VI with the pure 

spectra did not significantly improve the accuracy, and kappa values were only about ±1–3% than that of the pure 

spectra. We think it is probably because: (1) Most of ground cover in ZS is vegetation, so that the VI of BV is not 

much different from that of other plants. (2) Our grasp of phenology was not sufficient, and SC was not all in a state of 

withering. (3) Because plant physiology is not static, but dynamic, and will respond differently to climates. 

 

Table 3. Influence of VIs on SC classification accuracy (take SVM as an example) 

date Pure spectra Pure spectra + NDVI Pure spectra + GNDVI 

kappa OA kappa OA kappa OA 

growth period (5/19) 0.48 0.58 0.46 0.57 0.46 0.57 

withering period (11/7) 0.64 0.71 0.63 0.70 0.63 0.70 

bi-temporal (5/19, 11/7) 0.78 0.82 0.77 0.81 0.77 0.81 
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Table 4. Influence of VIs on BV classification accuracy (take SVM as an example) 

 Pure spectra Pure spectra + NDVI Pure spectra + GNDVI 

 kappa OA kappa OA kappa OA 

single-temporal (1) 0.35 0.46 0.33 0.45 0.32 0.43 

single-temporal (4) 0.34 0.45 0.37 0.48 0.37 0.48 

single-temporal (8) 0.55 0.62 0.55 0.62 0.55 0.62 

single-temporal (11) 0.73 0.78 0.73 0.78 0.73 0.78 

bi-temporal (1, 4) 0.47 0.56 0.36 0.46 0.32 0.44 

bi-temporal (1, 8) 0.60 0.67 0.60 0.66 0.60 0.67 

bi-temporal (1, 11) 0.77 0.81 0.77 0.81 0.78 0.82 

bi-temporal (4, 8) 0.62 0.68 0.62 0.68 0.62 0.68 

bi-temporal (4, 11) 0.75 0.79 0.77 0.81 0.77 0.81 

bi-temporal (8, 11) 0.82 0.84 0.82 0.84 0.82 0.84 

three-temporal (1, 4, 8) 0.66 0.72 0.60 0.66 0.60 0.66 

three-temporal (1, 4, 11) 0.77 0.81 0.78 0.81 0.32 0.44 

three-temporal (1, 8, 11) 0.81 0.84 0.83 0.86 0.83 0.86 

three-temporal (4, 8, 11) 0.83 0.86 0.83 0.86 0.83 0.86 

four-temporal (1, 4, 8, 11) 0.82 0.85 0.82 0.86 0.82 0.86 

* Numbers in the table represent months 

 

4.4 Second validation 

 

The data modeling in the “virtual Earth” must be returned to the “physical Earth” to verify whether it matches. The 

second validation of BV has not been done in this study because of insufficient manpower and time allocation, and 

the distribution of BV is too widespread and scattered. We will be supplemented in follow-up study. As for the results 

of the second validation of a community of SC, the difference between the SVM and the physical was the smallest. 

The difference was only 0.006 ha from the in-situ measured value, and the correct overlap rate reached 71.73%. A 

possible reason for this result was that the leaf of SC extended to the embankment slope, which was identified by 

algorithms, but it was difficult to position this area in-situ. 

 

Table 5. The results of second validation. 

algorithms estimated area (ha) difference from the measured value (ha) Correct overlap rate (%) 

MLC 0.017 0.007 63.54% 

SVM 0.018 0.006 71.83% 

RF 0.015 0.009 57.62% 

measured value 0.024 - - 

 

 
Figure 7. Comparison of estimated values and in-situ measured. 

 

5. CONCLUTIONS 

 

In this study, UAV was used to obtain large-scale IAPs data, and Trimble R12 was used to measure LI with high 

accuracy, and it traveled between the “metaverse” virtual Earth and the “physical Earth”. First, we confirmed that the 

high autonomy and mobility of UAV can precisely capture the phenological traits of plants and more than enough to 

identify scattered IAPs. It is far more beneficial than done by spaceborne and airborne. Especially in the difficult 

intertidal zone or mountainous with complex topography, we need to use UAV to cross the environmental barrier. 

Using multi-temporal images do significantly improve classification accuracy. However, the addition of two VIs did 

not improve the accuracy significantly, which may be related to the fact that the study area is all plants, and the 
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phenological traits have not been fully grasped. 

 

In terms of future developments of this paper, we are planning to: (1) As “Rome was not built in a day,” we will take 

advantage of the highly autonomous and mobility of UAV to capture multi-temporal images from growth period, 

puberty to withering period (first year 8–12 periods), and even monitoring across the years to find the best 

combination of phenological traits of IAPs, and gain insight into the most critical date images. (2) If we can obtain a 

heavy UAV, we will use it as a priority for the expanded survey scale; if not, it will be paired with appropriate 

satellite/aerial images. (3) rely on UAV to obtain huge “light pattern” information, using deep learning for 

perspective analysis. (4) Sampling to in-situ measure the coverage area of IAPs, and compare it with the estimated 

results of the “virtual Earth” i.e., calculate the root mean square error between in-situ measured values and estimated 

values. Not only estimate the distribution of IAPs’ high potential but also return from the “metaverse” virtual Earth to 

the physical Earth for validation. Another point that cannot be ignored is to confirm how serious the impact of IAPs 

on Taiwan Island’s ecosystem is. We will use 3S technology to analyze and confirm the severity of the damage in the 

future. 

 

6. REFERENCES 

 

Dalponte, M., Bruzzone, L., and Gianelle, D., 2008. Fusion of hyperspectral and LIDAR remote sensing data for 

classification of complex forest areas. IEEE Trans. Geosci. Remote Sens., 46 (5), pp. 1416-1427. 

 

Gitelson, A.A, Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote sensing of global vegetation 

from EOS-MODIS. Remote Sensing of Environment, 58 (3), pp. 289-298. 

 

Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberge, J.P., 1977. The World’s worst weeds: distribution and biology. 

University Press of Hawaii, Honolulu. 

 

Hulme, P.E., 2021. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions 

worldwide. One Earth, 4 (5), pp. 666-679. 

 

Hwang, C.C., 2011. A new exotic invader to taiwan’s coastal marsh. Nature conservation quarterly, (74), pp. 36-40. 

 

Kuo, Y.L., Chen, T.Y., Lin, C.C., 2002. Using a Consecutive-Cutting Method and Allelopathy to Control the 

Invasive Vine, Mikania micrantha H.B.K. Taiwan Journal of Forest Science, 17 (2), pp.171-181. 

 

Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C. Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., and Liu, 

X., 2020. Development of spectral-phenological features for deep learning to understand Spartina alterniflora 

invasion. Remote Sensing of Environment, 242, 111745. 

 

Tucker, C.J.,1977. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of 

Environment, 8 (2), pp. 127-150. 

 

Vilhar, U., Beuker, E., Mizunuma, T., Skudnik, M., Lebourgeois, F., Soudani, K., and Wilkinson, M., 2013. Tree 

phenology. Developments in Environmental Science, 12, pp. 169-182. 

 

Warren, R., Price, J., and Jenkins, R., 2021. Climate change and terrestrial biodiversity. In: The Impacts of Climate 

Change, edited by Letcher, T.M., Elsevier, pp.95-97. 

 

Yang, L., 2016. Alternative management strategies for the coastal wetlands invaded by exotic species of Spartina 

alterniflora. Journal of Wetlands, 5 (1), pp. 40-54. 

 

Zeng, J., Sun, Y., Cao, P., Wang, H., 2022. A phenology-based vegetation index classification (PVC) algorithm for 

coastal salt marshes using Landsat 8 images. International Journal of Applied Earth Observation and Geoinformation, 

110, 102776. 

javzandulam.b
Placed Image


