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ABSTRACT: The geospatial community has benefited from open data initiatives in this Big Data era due to 

increasing availability of remote sensing data. However, mostly of the readily available imagery datasets are of low- 

to medium-resolution. Image fusion has been one of the common techniques to improve spatial and spectral resolution 

to support a majority of remote sensing applications.  But, fusion results need to be evaluated before use for remote 

sensing applications. Both quantitative and qualitative (visual inspection) methods are used for assessment of the 

results. Moreover, visual examination of fused images has become a necessary procedure due to the sub-optimality of 

quantitative metrics. Visual inspection is can be done more effectively on high-resolution images, but it is more 

difficult on medium and low resolution images due to their coarseness. This paper proposes an approach to enhance 

visual assessment of fusion results for medium resolution imagery. The model provides a comprehensive evaluation 

of the uncertainty characteristics of the resulting images. Research findings prove that the proposed indices can 

effectively highlight the differences in fused images. Areas that have lost some spectral or spatial characteristics for a 

given fusion algorithm can be easily identified on the visualization layer than would otherwise be on the original 

results. The proposed approach has demonstrated a higher level of interpretation of the fusion results than 

single-valued quality metrics. The spatial explicit quality assessment model adds value, use, and acceptance of results 

derived from remote sensing products. 

 

1.  INTRODUCTION 

 

Open data initiatives in this Big Data era have brought new and better services to the geospatial community. The 

available free remote sensing images are of low to medium resolution in which only homogenous areas can have pure 

pixels. Image fusion has been one of the preferred techniques to improve spatial and spectral resolution to support a 

majority of remote sensing applications. However, the fusion procedures are less than perfect. The least spectrally 

distorted image is the one that has not undergone any spatial enhancement. It has been emphasized in the literature 

that it is difficult to preserve both spectral and spatial information of the input images during fusion procedures 

(Dadrass Javan et al., 2021; Pohl, 2013; Snehmani et al., 2017). Due to the inherent difficulty in preserving the quality 

of both spectral and spatial information of the input images during fusion procedures, the quality assessment of fused 

images becomes an important topic in remote sensing. 

Fused images need to be evaluated before use in remote sensing applications. Several quantitative metrics have been 

proposed including average gradient, the root mean squared error, the relative global synthesis error, correlation 

coefficient, to name a few. The earlier work by Wang and Bovik proved that the mean square error is inadequate for 

comparison with visual assessment of the results (Wang & Bovik, 2009). The findings have given rise to the 

definition of many other indexes for assessing image quality. The latest work by Shao applied ten indices as 

assessment metrics for their fusion results and concluded that no results can have all metrics optimal and that the 

process of fusion requires finding a balance between various metrics (Shao et al., 2020). A comparison assessment of 

different pan sharpening techniques using Landsat 8 imagery encountered the same contradictions when comparing 

best results according to statistical analysis and best results according to visual inspection (Govind et al., 2019). 

Despite the efforts, still, there is a lack of a universally accepted evaluation index matching the human capability in 

assessing the efficiency of fused results (Govind et al., 2019; Q. Wang et al., 2017). As a result, quality metrics for 

measuring image fusion quality and assessing the difference in quality between two images is still an open problem. 

Due to sub-optimality of quantitative metrics visual inspection becomes a necessary complimentary procedure for 

assessment of fused images. Visual analysis of fused images is referred to as a qualitative method. This approach has 

an advantage of being simple; however, highly dependent on the visual conditions, viewers' experience, and 

sometimes it can be time-consuming (Jagalingam & Hegde, 2015; Wald et al., 1997). Visual inspection can be done 

more effectively in high-resolution, remotely sensed images; however, it is more challenging in medium and low 

resolution due to the coarse nature of the images. Therefore, this paper proposes an application of uncertainty model 

for enhancing image characteristics to facilitate quality assessment of the fusion results on medium resolution images. 
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The goal is to help the user to make an informed choice of a suitable fusion algorithm through visualization of 

uncertainties that can negatively affect the classification results. 

 

2.  METHODOLOGY  

 

2.1 Study Area and Data 

 

Our experiments used Landsat 8 data sets which cover a scene in Dodoma, the capital city of Tanzania (35.745°E, 

6.171°S). The study area has a spatial extent of 1150 columns x 1030 rows of pixels of 30m Landsat bands. The city 

is in a semi-arid environment (Shemsanga et al., 2016). The study area is covered by urban buildings, roads (surfaced 

and unsurfaced roads), and dry areas with little /no vegetation, trees/shrub lands, farmlands, and water. Three popular 

pan-sharpened algorithms namely Brovey transform (BT), principal component analysis (PCA), and Gram–Schmidt 

(GS) spectral sharpening methods were applied to the multispectral images. 

2.2 Method 

Let's consider a classification task as the target application for the fused images. During fusion, changes that happen 

in the feature space and image space that may alter image characteristics to represent variations of the land cover 

surface. Hence modelling variations in both contexts provides a comprehensive understanding of image 

characteristics. Therefore, to improve the visual inspection of fusion results of medium resolution images, we model 

variations in the feature space and in the image space (spatial domain). 

 

2.2.1 Image Space Uncertainty (ISU) 

High spatial heterogeneity and the level of detail in urban areas lead to intra-class spectral variability and mixed 

pixels. In a highly complex neighbourhood, there are greater variations in the local neighbourhood, than in a more 

homogenous area. A pixel that is so different from its neighbourhood has a higher chance of not belonging to the same 

class as its neighbourhood pixels. Hence, a pixel has high uncertainty when the difference with its neighbourhood is 

large (Zhang et al., 2019).  A more complex region leads to higher uncertainties in the spatial domain. The secondary 

source of uncertainty is during image fusion. Processes such as resampling, interpolation calculations and matching 

involve approximations. Some uncertainty is introduced in the image space and feature space as well each time these 

procedures take place. Hence, the fused image is a result of a series of estimations. 

 

Figure 1.Changes taking place during image interpolation 

 

Figure 2. Changes in the image space a 3x3 pixel neighboring window 

The square pixel neighboring window is referred to as O(i,j) with window length l. The size of the window is lxl, Pxy 

is the pixel of the x-th row and the y-th column in the l*l neighborhood, and a center pixel P(i,j). For more reliable 

results I adapted the approach which favors the evaluation of fusion results at PAN scale (Alparone et al., 
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2008)(Zhang, 2004)(Govind et al., 2019). I worked with a down-sampled multispectral image (MS) and a derived Pan 

sharpened image (PMS). Original MS image is I, resampled or interpolated image as R, and Pansharpened or fused 

image as FI.  

Different bands have varied ability for modeling the environment; we can consider different bands as different 

features. For a k
th

 dimension feature in the multispectral space, spectral feature uncertainty of a pixel is high when the 

difference with its neighborhood is large. Spectral feature uncertainty (S) in a given neighborhood can be calculated 

using equation (1), (Zhang et al., 2019). 
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with     
 as the weight of influence of pixel     on target pixel     in the neighborhood window, the weight 

decreases with increasing distance from pixel    , first law of geography (Lv et al., 2017).   And,     
 and      

  are 

pixel values in the k
th

 feature that corresponds to pixels     and     in the kernel neighborhood window. 

The ability of different bands for modeling the environment can be evaluated based on variations of the content of 

pixels in the given neighborhood. Locally adaptive weight provides better generalization than global weights (Lu et 

al., 2018). A study by Tsai et al. (2008) demonstrated that the amount of transmitted information based on 

information entropy is highly correlated to noise and blurring in medical imaging. Entropy has also been introduced 

in a recent work by Yu et al. (2020) to measure land cover heterogeneity. Both of these concepts are directly related to 

an increase in uncertainty. Hence, a Local Adaptive Multi-Feature Weighting Method based on Information Entropy 

theory is applied to measure feature uncertainty in both MS and PMS images. 

Information entropy     
  of the local l*l neighborhood of pixel     in the k

th
 band, can be computed as proposed in 

(Yu et al., 2020; Q. Zhang et al., 2019), in equation (2). 
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Then, the overall uncertainty in image space will be given by equation 4. 
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2.2.2 Feature Space Uncertainty (FSU) 

 

In the feature space, pixels cluster together represents specific classes. Theoretically, the closer the pixels are to each 

other in the feature space, the more similar they are and the greater chance of belonging to the same class. In an ideal 

case, feature points in the feature space are highly concentrated around the cluster centre with clearly defined class 

boundaries, and we can have the highest confidence that these data fall under the same class. However, in reality, the 

distribution of points in the feature space will be more spread with varying degrees of uncertainty depending on the 

level of heterogeneity of the land cover. Feature points with high uncertainty will be those most affected by noise, 

mixed pixels, and intra-class differences. These points are frequently scattered far from cluster centres, increasing 

their chances of being misclassified. 
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Figure 3. Distribution of feature points in the two-dimensional feature space 

Quantitative assessments in the feature space are focused on the variations in the intensity distribution of feature 

points. In a pan-sharpened MS image, we are dealing with multiple clusters which need to be identified first. The 

more distant the two pixels are to each other for a given cluster in the feature space, the higher the uncertainty of 

belonging to the same information class and vice versa. Pixels belonging to a cluster with a higher concentration of 

pixels have lower uncertainty and vice versa. Therefore, centres of all clusters should be located at the high-density 

region of the feature points. Feature points that fall near the centre of high-density area in clusters will have lower 

uncertainty. In a cluster point that are far away from a high-density area are more likely not to belong in the same class. 

So, uncertainty increases as moving far away from high density area in clusters. 

 

The distance between feature points in each cluster is determined by Euclidean spectral distance (ESD) equation (5):  

 
Figure 4. Example of calculating     
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with   
  representing the central reference feature point   with the highest local density in the cluster and   

  is the 

feature of the j
th

 pixel in the given cluster. 

The density distribution of each cluster in a given layer is computed by the following equation 6:  
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where    
 represents distribution density of feature points in cluster c in band   ;   is the total number of pixels 

representing the feature points for a given cluster c in band  ;      represents the ESD of the j
th

 feature point to the 

cluster's reference centre point  . Then, we calculate the overall feature uncertainty for all layers by averaging the 

values of pixels from each band and refer to it as   .  

2.2.3 Overall fusion uncertainty 

Overall fusion uncertainty (FU) is obtained by taking the average measure of ISU and FSU. 

2.2.4 Visualization and Validation Scheme 

Rescaling of uncertainty values helps to make the difference in the results more visible for different fusion algorithms. 

Normalization is one of the common feature scaling methods, also referred to as dynamic range expansion. Dynamic 

range expansion has the benefit of bringing the image into a better range for image interpretation (Gonzalez & Woods, 

2007). Therefore, the normalization transforms the uncertainty values (U) in the feature space and in the image space 

U:{    }  {         }  into a new image     {    }  {               }. 

An average of feature space and image space uncertainties provides a combined measure of uncertainty, FU.   We are 
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using a common classification algorithm, Maximum likelihood classification (MLC). Each pixel is classified 

according to the class with the greatest probability. If the chance of the highest classification is less than the limit you 

set, the pixel stays unclassified. Therefore, we compute the discriminant functions for each pixel in the given image 

(Richards, 1999), to obtain the results for maximum likelihood classification. Furthermore, to test this phenomenon's 

validity, the uncertainty raster image (U) was reclassified into N desired levels. Then, Pearson correlation coefficient 

is used to determine the relationship between levels of uncertainty and the rate of unclassified pixels. 

3.  RESULTS & DISCUSSION 

3.1 Uncertainty visualization results 

Three fusion algorithms were applied, and their results are used for the assessment of the proposed model. The 

applied methods are Brovey transform (BT) pan-sharpening method, principal component analysis (PCA), and 

Gram–Schmidt (GS) spectral sharpening. 

 

 
Figure 5. Results for image space uncertainty ISU, feature space uncertainty FSU, and overall uncertainty FU 

 

The results of image-space uncertainty (ISU) and feature space uncertainty (FSU) of the pan-sharpened images were 

merged to form a fusion uncertainty index, FU. Results for ISU, FSU, and FU are as presented in Figure 7. The 

uncertainty indices were computed for the entire study area. After that, more investigation was carried out on areas 

that displayed significant variations. The results of classified images were used for statistical assessment of the 

corresponding uncertainty results. A corresponding section of classified images (column (d) in Figure 7) is used to 

assess the correlation. 
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3.2 Correlation Analysis 

 

Parameters used for the proposed uncertainty approach are pixel neighbouring window size when calculating ISU, 

and the number of clusters when calculating feature space uncertainty. Five clusters were used to represent our study 

area classes based on visual inspection and literature recommendations (Yan et al., 2015). Several neighboring 

window sizes 3x3, 5x5, 7x7 and 9x9, have been tested and the number of classes was 5. The classification results 

were used for validation of the uncertainty model through correlation analysis. 

 

Figure 6. Scatterplots and fitted curves of the rate of unclassified pixels and the levels of uncertainty, for results in 

Figure 5 

A class boundary for the MLC classifier was set to visualize areas with a high rate of unclassified pixels or a higher 

chance of misclassification. 0.1 class probability was assigned to all classes except for one; the forest class was 

assigned a probability of 0.6. These are parameters used for image classification with MLC. And, the values were set 

the same for all classification results. Uncertainty values for downscaled MS bands, pan-sharpened BT, PCA, and GS 

range from 0 – 1. Zero representing minimum uncertainty and one as maximum uncertainty. The probability of 

unclassified pixels for each corresponding uncertainty level was compared using the Pearson correlation coefficient, 

R. The scatterplots and fitted curves are displayed in Figure 6. 

 

3.3 Assessment of the Proposed Model 
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The experimental results suggest that the proposed uncertainty model provides a good opportunity for enhanced 

visual inspection of medium-resolution fused images. Results demonstrate that the proposed indices can quantify and 

effectively create useful visualizations on how a fused image characterizes the scene's complexity. More complex 

areas have higher uncertainty and a higher rate of unclassified pixels, and vice versa. The correlation coefficient R 

between the uncertainty levels in the visualization map and the unclassified pixels rate is greater than 0.9 for all three 

tested cases in Figure 6. These findings promote applying the approach in practice, but the choice of parameters can 

influence the model's efficiency. Hence, the reason behind the selection of values for the given parameters must be 

known. 

The lesson learned from parameter analysis is that the neighbourhood window size directly influences the correlation 

of the results. A very small kernel size like a 3x3 window is noisier, and it may raise unnecessary attention to very 

minor differences. The resulting image is also noisier. On the other hand, a very large window may suppress much of 

the uncertainties and limit the ability to visualize the difference in variations of image properties from one image to 

another. For visual assessment, we suggest a 7 by 7 kernel. This one provides a good visual presentation than the 

others, and at the same time, it can emphasize important differences in the images. The comparison analysis of kernel 

size used in the calculations of image space uncertainty and its influence on the overall correlation coefficients R is 

summarized in Table 1. Apart from the visualization aspect, a quantitative assessment of a 7x7 window yields the 

highest correlation as shown in Table 1.  

A combination of ISU and FSU obtains overall uncertainty in the image. These indices complement each other. While 

FSU can be more affected by intra-class variations, ISU is also more sensitive to minor changes. Using an optimum 

neighbourhood window size is necessary to achieve the best ISU results. In some areas, ISU performed better than 

FSU, and vice versa. In this work, ISU and FSU had equal weight.  

 

Figure 7. Results for GS based image space uncertainty (a) 3x3 neighbourhood window, and (b) 7x7 neighbourhood 

window 

The model has performed very well for BT results in both cases. A more plausible explanation for this phenomenon 

could be its simplicity. BT uses RBG bands only, but PCA involves multiple bands and more complex 

transformations of the original vector space. GS algorithm is a generalization of PCA (Vivone et al., 2015). However, 

all three BT, GS, and PCA correlation results are good and satisfactory despite the minor differences.  

Table 1. Comparison between neighborhood window size and correlation coefficient R 

Fusion method Window size Equations of the Fitted Curves 
Correlation 

Coefficient R 
R

2
 

PCA 
3x3 y = 36.681x - 1.5002 0.909 0.8272 

7x7 y = 33.033x - 1.3051 0.954 0.9119 

BT 
3x3 y = 5.0683x + 1.8282 0.914 0.8354 

7x7 y = 17.534x + 0.7998 0.978 0.9583 

GS 
3x3 y = 21.598x + 0.6882 0.914 0.8363 

7x7 y = 23.4x + 0.1688 0.951 0.9049 
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3.4 Advantage of the visualization results in comparison with the traditional approaches 

 

Over the years, several image fusion algorithms have been proposed. The reason behind such a proliferation of 

research work in this area is a challenging complexity trade-off for optimization of spatial and spectral parameters to 

provide superior results at minimal loss of image quality. Visual inspection has been recommended as a necessary 

procedure for identifying local spectral and spatial distortions in rendering details of the fused results (Alparone et al., 

2007; Mas et al., 2017). The visualization indices proposed in this work have enhanced visual inspection of fusion 

results for medium resolution remotely sensed images.  

Figure 8 illustrates the proposed model's results, and demonstrated how it highlights the differences between the 

images. These results can be interpreted as follows. Areas with high uncertainty inform us that these are areas of high 

complex neighbourhoods. In comparison, regions with low uncertainty are expected to be more homogenous and 

have more pixels which are similar to others in the region.  

 
Figure 8.  A comparison of fusion algorithms 
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In Figure 8, if a user's interest is to analyse a wastewater pond and its surroundings in A, BT results would be the best. 

Despite the fusion effects, still maintain some key features to delineate this area from the rest. However, PCA and GS 

result in this area exhibiting very low variations in this neighbourhood (square A). This result tells us that a fused 

image has lost some characteristics to efficiently discriminate between land cover classes in this area compared to BT 

results. However, in region B, PCA and GS maintain most land cover variations that BT in this area. It is more 

challenging to observe these differences in the fused images without the visualization layer's help. Visualization of 

the variations provides a helpful tool for visual inspection of fusion results of coarse images. 

 

Another advantage proposed approach is that the visualization indices facilitate a high level of interpretation of fusion 

results. Single valued evaluation metrics such as RMSE, SAM, SNR have limited ability to help the analyst 

conceptualize characteristics of the resulting image (Hodgson, 1998). Single valued metrics are intended to report the 

accuracy of the entire image with a single value. Spatially explicit models can add value, use, and acceptance of 

results derived from remote sensing products (Foody & Atkinson, 2006; Samadzadegan, 2013). The proposed 

uncertainty model provides a better understanding of the quality of the resulting image for the intended application.  

 

4. CONCLUSION 

 

The selection of an appropriate fusion algorithm that maintains both spectral and spatial content in the fused image is 

challenging, a much-debated problem (Alparone et al., 2007). Due to the sub-optimality of existing quantitative 

evaluation procedures, a qualitative evaluation of the results through visual inspection is a necessary procedure 

(Vivone et al., 2015). Therefore, this paper put forward a visualization model for enhanced visual inspection of fusion 

results of medium resolution images. The index is an output of a comprehensive model that reveals the uncertainty 

characteristics in a fused image to represent land cover surface variations or complexity. Best fusion results of a high 

complex neighbourhood in the visualization model reveals higher variations of the given area otherwise the results 

are considered less reliable, and the vice versa. Results of the validation experiments in this paper show a high 

correlation in all tested cases encouraging the application of the model in practice.  

The results of the model provide a higher level of interpretation of fusion results compared to single-valued 

quantitative metrics. Furthermore, the visualization layers have proved to reveal key uncertainty characteristics that 

would otherwise be difficult to observe by visual inspection of fusion results only in the case of medium satellite 

images. In this paper, however, uncertainty has been assessed at a pixel level. Due to high generalization in coarse 

resolution, some aspects of uncertainties may not be easily mapped at a pixel level. Future works may focus on 

sub-pixel uncertainty models for the evaluation of fused images.  
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