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ABSTRACT: In a single-media environment, dense image matching can be effectively conducted along one-

dimensional epipolar line or by row-to-row corresponding epipolar imagery. In contrast, when the light passes through 

multi-media in an underwater flat-port camera, incident ray is refracted, and conjugate trajectory becomes a quartic 

curve, complicating the image matching task.  Although the quartic curve can be realized by ray tracing or refractive 

fundamental matrix, the former is lack of explicit equation of the trajectory, while the latter is mathematically complex. 

Furthermore, not only the curve itself is crucial, but also the uncertainty, resulting from the errors of relevant 

parameters, of the trajectory should be taken into consideration during the image matching process, which has not 

been clearly addressed in the literature yet. In this research, first, the result of conjugate trajectory is provided based 

on a coplanar condition in axial camera configuration. Second, one of the influential factors, the distance from 

perspective center it the interface, of the trajectory is analyzed by error propagation with the analytical function. Thus, 

it is the aim of this study to provide a more efficient way to locate the quartic trajectory and define the error range of 

the trajectory for the mission of underwater dense image matching as employing flat-refractive imaging system. 

1. INTRODUCTION

Photogrammetry has been applied to several 3D reconstruction tasks under the water, such as the reconstruction of 

corals, sea beds, river habitats and so on. In underwater environment, cameras are usually equipped with water-proof 

flat-ports. When the light bounces off object and passes through the lens system, the ray travels through three mediums, 

water, glass and air. According to Snell’s law, the light is refracted when the media changes which results in that the 

object point, perspective center and the image point are not on the same line. When this phenomenon occurs on a 

stereo-pair, the conjugate trajectory becomes a quartic-curve, in contrast to epipolar line in a single-media situation. 

In a single-media environment, the conjugate rays and baseline vector are coplanar. Based on this geometry, dense 

image matching is conducted along one-dimensional epipolar line or row-to-row corresponding epipolar imagery, 

which are effective and powerful. However, these kinds of operations cannot apply to non-coplanar quartic curve 

trajectory in multi-media system, complicating the image matching task. 

To locate the quartic conjugate trajectories, researchers have proposed two main approaches. First, the ray tracing 

method, given any image point on the left image and the possible depth of the object point, it can be traced back to 

the conjugate points on the right image. Gedge et al. (2011) simulated the conjugate trajectories under water-air 

environment, and they solved a degree of four equations for each point on the trajectories, point-by-point, thus 

computationally expensive. Lee et al. (2017) further reduced the searching area and computational resources by 

confining the possible range of depth of the object points. Although ray tracing method can be used as a tool for 

finding conjugate trajectories, it does not provide any clear function between stereos; besides, the depth of object 

points in the computational process is needed. 

 In contrast to ray tracing method, the other approach tried to build the relative geometry relationship between a 

stereo-pair. Chari and Sturm (2009) proposed “Refractive fundamental matrix”. This equation is the first one which 

describes a clear relationship between the left and right conjugate rays; moreover, there is no requirement of the depth 

of object points. Based on the refractive fundamental matrix and the concept of “axial camera system (Agrawal et al., 

2012)”, Elnashef and Filin (2022) developed a new equation that improved the refractive fundamental matrix, they 

well applied this equation to calibrate the exterior orientation parameters (EOPs), interior orientation parameters 

(IOPs) and interface parameters.  

With a clear formula, the trajectories can be calculated without the information of object point. However, the 

uncertainty, resulting from the errors of relevant parameters, of the trajectory has not been clearly addressed in the 

literature yet. Thus, in this research, we develop the equation first, and utilize it to calculate and analyze the 

uncertainty of trajectory. The method is described in chapter 2, the results and discussion are shown in chapter 3, and 
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finally the chapter 4 is the conclusion. 

 

2.  METHODOLOGY 

 

2.1 Coplanar Geometry Between Stereo-Pair Under Axial Camera System 

 

  
Figure 1. Axial camera system Figure 2. Coplanar geometry between stereo under axial 

camera system (revised from Elnashef and Filin (2022)) 

 

2.1.1 Axial Camera System: In a multi-media environment, the light rays refract when passing through the interface 

of two media, so the object point, perspective center and the image point are not on the same line which violates the 

properties of pinhole camera system. Nevertheless, if the lights go straight without bending while passing through the 

interface, as the dashed line in figure 1, the lights will intersect with the axis, which is parallel to the normal vector 

of interface and penetrates the perspective center. The intersection point varies with different object points. Therefore, 

this system is called axial camera system that the lights would intersect at different position along the axis (Agrawal 

et al., 2012). Gaining more insights in this system, we can regard the intersection points on axis as the new perspective 

centers, and the interface as a big image plane so that the points on interface is the new image points in this camera 

system.  

 

2.1.2 Axial Camera System in Stereo Pair: It’s shown in figure 2 that the conjugate rays 𝑎𝐿⃗⃗⃗⃗ , 𝑎𝑅⃗⃗ ⃗⃗  are not coplanar 

with original baseline vector 𝑏0
⃗⃗⃗⃗  ⃗, but with the new baseline vector 𝑏⃗⃗   formed by new perspective centers L′ and R′ 

under axial camera system, the coplanar geometry is reconstructed. Equation (1) expresses the coplanar condition 

within three vectors, and the matrix form is expressed as equation (2). 

 

𝑏⃗ ∙ [𝑎𝐿⃗⃗⃗⃗ × (𝑎𝑅⃗⃗ ⃗⃗ )] = 𝑎𝐿⃗⃗⃗⃗ ∙ [𝑏⃗ × (𝑎𝑅⃗⃗ ⃗⃗ )] = 𝑎𝐿⃗⃗⃗⃗ 
T
Kb(𝑎𝑅⃗⃗ ⃗⃗ ) = 0 (1) 

[xaL
yaL

zaL] [

0 −bz by

bz 0 −bx

−by bx 0
] [

xaR

yaR

zaR

] = 0 (2) 

where   

𝑎𝐿⃗⃗⃗⃗ = [xaL
yaL

zaL]T, 𝑎𝑅⃗⃗ ⃗⃗ = [xaR
yaR

zaR]T, 𝑏⃗ = [bx by bz]T  

 

2.2 Coplanar Geometry Between Stereo-Pair in Left Interface Coordinate System 

 

The coplanar condition above is based on the refracted vectors 𝑎𝐿⃗⃗⃗⃗  and 𝑎𝑅⃗⃗ ⃗⃗  and the baseline vector 𝑏⃗ . However, in order 

to build the relationship between the stereo-pair, we need to put the exact image points into equation (2), and rewrite 

𝑎𝐿⃗⃗⃗⃗ , 𝑎𝑅⃗⃗ ⃗⃗  and 𝑏⃗  as the function of left and right image points. Here we introduce two main coordinate system, image 

coordinate system and interface coordinate system. The former is defined by an image plane and the optical axis, and 

the origin of the coordinate is at the perspective center; the latter is defined by the normal vector of the interface and 

the interface plane, and its origin is at the perspective center too, as shown in figure 3. If the optical axis is parallel to 

the normal vector of the interface, then two coordinate system are the same. Besides, left and right images have their 

own interface coordinate systems.  
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2.2.1 Transformation Between Image and Interface Coordinate System: Considering the small angle of 

installation error between the flat-port and the image plane, image coordinate system and the interface coordinate 

system are not always identical. This inclination could be understood from the calibrated normal vector of the 

interface in the image coordinate system nc⃗⃗  ⃗ = [nx ny nz]T. The normal can further define the rotation matrix 𝑅𝜂, 

rotating from the interface coordinate system to the image coordinate system, as shown in equation (3). 

 

𝑅𝜂 = [
nc⃗⃗  ⃗ × 𝑧 

‖nc⃗⃗  ⃗ × 𝑧 ‖

nc⃗⃗  ⃗ × (nc⃗⃗  ⃗ × 𝑧 )

‖nc⃗⃗  ⃗ × (nc⃗⃗  ⃗ × 𝑧 )‖

nc⃗⃗  ⃗

‖nc⃗⃗  ⃗‖
] , where 𝑧 =  [0 0 1]T (3) 

 

Given an image point (x, y), the vector from the perspective center to the point is 𝑚⃗⃗ = [x y −f]T. Same vector in 

the interface coordinate system is  𝑎𝑖0⃗⃗ ⃗⃗  ⃗ = 𝑅𝜂
T 𝑚⃗⃗ = [xai0

yai0
zai0]

T , where i = l or r, which means that the vector 

is in the left interface coordinate system and the right interface coordinate system, respectively. 

 

2.2.2 Refraction Under Interface Coordinate System: Based on Snell’s law (refer to equation (4) and figure 3), the 

refracted vector 𝑎𝑖⃗⃗  ⃗ can be expressed as the function of the incident ray 𝑎𝑖0⃗⃗ ⃗⃗  ⃗ and the ratio of refractive coefficients λ =
na nw⁄ , where na is the refractive coefficient in the air, and nw is the refractive coefficient in the water, as shown in 

equation (5) (Chari and Sturm 2009; Elnashef and Filin ,2022). It is noteworthy that 𝑎𝑙⃗⃗  ⃗ and 𝑎𝑟⃗⃗⃗⃗  here are not in the 

same coordinate system, but in the left and right interface coordinate system, respectively. 

 

na sin αi = nw sin βi (4) 

𝑎𝑖⃗⃗  ⃗ = [

𝑥𝑎𝑖

𝑦𝑎𝑖

𝑧𝑎𝑖

] =

[
 
 
 
 

λxai0

λyai0

−√λ2zai0
2 + (1 − λ2)‖𝑎𝑖0⃗⃗ ⃗⃗  ⃗‖2

]
 
 
 
 

= λ𝑎𝑖0⃗⃗ ⃗⃗  ⃗ + 𝛿𝑖𝑛⃗  

= λ𝑎𝑖0⃗⃗ ⃗⃗  ⃗ + (−λ(𝑎𝑖0⃗⃗ ⃗⃗  ⃗
T
n⃗ ) − √λ2(𝑎𝑖0⃗⃗ ⃗⃗  ⃗

T
n⃗ )2 + (1 − λ2)‖𝑎𝑖0⃗⃗ ⃗⃗  ⃗‖2) 𝑛⃗  

= λ𝑅𝜂
T 𝑚⃗⃗ + (−λ(R𝜂

13x + R𝜂
23y + R𝜂

33(−f))

− √𝜆2(R𝜂
13x + R𝜂

23y + R𝜂
33(−f))

2
+ (1 − 𝜆2)(x2 + y2 + f 2)) 𝑛⃗  

(5) 

   

Figure 3. In the middle part of the figure is two coordinate system: Image coordinate system is in black; interface 

coordinate system is in orange. On the left and right side of the figure is the refractive plane of left and right images. 

 

2.2.3 New Perspective Center in Interface Coordinate System: Elongating the refracted vector until it encounters 

the axis, the intersection point is the new perspective center. In the interface coordinate system, the points on the axis 

is always on the z-axis that x and y coordinates are always zero (equation (6)). Thus, the offset of the perspective 

center ki, as shown in figure 2, is expressed as equation (7). 

 

javzandulam.b
Placed Image



𝑞𝑖 +
d + k𝑖

𝑎𝑖⃗⃗  ⃗
T
n⃗ 

𝑎𝑖⃗⃗  ⃗ =
−d

𝑎𝑖0⃗⃗ ⃗⃗  ⃗
T
n⃗ 

𝑎𝑖0⃗⃗ ⃗⃗  ⃗ +  
d + k𝑖

𝑎𝑖⃗⃗  ⃗
T
n⃗ 

𝑎𝑖⃗⃗  ⃗ = k𝑖𝑛⃗  (6) 

k𝑖 = −d −
d√𝜆2(𝑎𝑖0⃗⃗ ⃗⃗  ⃗

T
n⃗ )2 + (1 − 𝜆2)‖𝑎i0⃗⃗ ⃗⃗  ⃗‖2

λ𝑎𝑖0⃗⃗ ⃗⃗  ⃗
T
n⃗ 

 

= −d −
d√𝜆2(R𝜂

13x + R𝜂
23𝑦 + R𝜂

33(−f))
2
+ (1 − 𝜆2)(x2 + y2 + f 2)

𝜆(R𝜂
13x + R𝜂

23y + R𝜂
33(−f))

 

(7) 

 

2.2.4 Integrate All Vectors into The Model Coordinate System: Setting the left interface coordinate system as the 

model coordinate system, the vectors in the right interface coordinate system need to be further transformed to the 

same space as the model coordinate system. As the relative orientation parameters, R rotates the vectors in the left 

image coordinate system to the right image coordinate system, and t is defined by the coordinate of right perspective 

center in the left image coordinate system.   

 

The vectors already in left interface coordinate system remains unchanged, including 𝑎𝑙⃗⃗  ⃗ and k𝑙𝑛⃗ , such that 𝑎𝐿⃗⃗⃗⃗ = 𝑎𝑙⃗⃗  ⃗. 
In contrast, the vectors in right interface coordinate system should be first transformed to the right image coordinate 

system, next the left image coordinate system, and end at the left interface coordinate system, which is the model 

coordinate system, such that  𝑎𝑅⃗⃗ ⃗⃗ = 𝑅𝜂
𝑇𝑹𝑇𝑅𝜂𝑎𝑟⃗⃗⃗⃗ , and R′ = 𝑅𝜂

𝑇
(𝑹𝑇𝑅𝜂k𝑟𝑛⃗ + 𝒕).  The new baseline vector 𝑏⃗  is shown 

in equation (8). Finally, the coplanar equation can be represented as equation (9).  Through this equation, given any 

image points on the left image, it could solve the conjugate trajectory on the right image; moreover, an analytical 

solution of the y coordinate on right image can be provided for further error propagation. 

 

𝑏⃗ = R′ − L′ = 𝑅𝜂
𝑇(𝑹𝑇𝑅𝜂k𝑟𝑛⃗ + 𝒕) − k𝑙𝑛⃗  (8) 

(λ𝑅𝜂
T 𝑚𝑙⃗⃗ ⃗⃗  + 𝛿𝑙𝑛⃗ ) ∙ {[𝑅𝜂

𝑇(𝑹𝑇𝑅𝜂k𝑟𝑛⃗ + 𝒕) − k𝑙𝑛⃗ ] × (𝑅𝜂
𝑇𝑹𝑇𝑅𝜂(λ𝑅𝜂

T 𝑚𝑟⃗⃗ ⃗⃗  ⃗ + 𝛿𝑟𝑛⃗ ))} = 0 (9) 

 

3.  EXPERIMENT RESULT AND DISCUSSION 

 

Based on the equation (9), we investigate 2 questions with conjugate trajectories. The first one is the conjugate 

trajectories on the right image and how the trajectories behave at different positions on the image; the other one is 

how the elements in the equation influence the trajectories, we specify the error on y-axis for each point. The setting 

of the experiment is described in chapter 3.1.  

 

  
Figure 4. Setting up Figure 5. Image points on left image 
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 3.1 Experiment Setting 

 
We simulated a stereo-pair that are paralleled to each other. The left perspective center is located at the origin and the 

right perspective center is located 1m away along the x direction, so 𝑹  is a 3-by-3 identity matrix and 𝒕 =
[1000 0 0]T (mm). The principal distance is 10 mm, and the perpendicular distance from the interface to the 

perspective center is 30 mm. Here, we assume the thickness of the glass is negligible, so this configuration is close to 

a two-media environment. In addition, the normal vector of the interface is parallel to the z-axis, such that nc =
[0 0 1]T = n, which means Rη is a 3-by-3 identity matrix. Apart from the setting of the camera and the interface, 

the object points are 2-meter-deep along the z-axis from the perspective centers, as shown in figure 4. 

 

Following this configuration, the imaging points of those 20 object points on the left image are shown in figure 5. In 

addition to the points considered the refraction effect, we also calculated the points without the refraction as a 

reference. 

 

3.2 Computing the Conjugate Trajectory 
 
Based on equation (9), given an image point on the left image 𝑚𝑙⃗⃗ ⃗⃗   (figure 6(a)), relative orientation (𝑹, 𝒕), and the 

parameters of interior orientation (f), interface (d), refractive coefficient (λ), we can solve the conjugate trajectory 

point-by-point, as shown in figure 6(b). Besides, we also plot the epipolar lines for each point, which are the conjugate 

trajectories in the single-media environment. To take a closer look into the area near the point 16 (figure 6 (c)), we 

can observe that due to the parallel setting of the stereo-pair and the object points; though, 5 curves are close to each 

other, they are not identical. 

 

Furthermore, in order to understand how big the error is, if we search for conjugate points on epipolar lines instead 

of curve trajectories, we calculated the y differences between the two trajectories and the average value is summarized 

in figure 7. In addition, the incident angle of each point for each curve is shown in figure 8. 

 

 

   
(a) Points on left image as the input (b) The conjugate trajectories 

(curves) and the epipolar line. 
(c) The zoom in view 

Figure 6. Input points on the left side and the conjugate trajectories of right image and epipolar lines on the right 

side 

 
 

Figure 7. The mean value of the differences Figure 8. The incident angle (°) of each point for each curve 
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3.3 Error Propagation: The Distance of the Interface to the Perspective Center (d) 
 

Under the parallel setting, the rotation matrix, such as 𝑹 and Rη can be simplified to the identity matrix. According 

to this simplification, the analytical solution of y coordinate can be provided, and this analytical solution is the 

function of all the elements in the coplanar equation except y. Thus, it could be utilized for further error propagation, 

and analysis of factors affecting the behavior of y. 

 

Here we take the distance from the perspective center to the interface (d) as the first example to be propagated. The 

value and the standard deviation of d is 30mm ± 1mm. The analytical function F= 𝑠𝑜𝑙𝑣𝑒(𝑎𝐿⃗⃗⃗⃗ 
T
Kb(𝑎𝑅⃗⃗ ⃗⃗ ) = 0, 𝑦𝑟), and 

the error propagation equation is shown in equation (10). The propagated results of the 20 trajectories are shown in 

figure 9. To express the details in each curve, we categorized all of them into 4 groups based on their location, and 

showed the value of standard deviation independently on the second y-axis (in red). Overall, the error decreases from 

the left side of trajectories to the right side, but there is some “bounce off” at the end of the trajectories. 

 

𝜎𝑦
2 =

𝜕𝐹

𝜕𝑑
𝜎𝑑

2 (
𝜕𝐹

𝜕𝑑
)

𝑇

 (10) 

  
(a) point 1, 5, 9, 13, 17 (b) point 2, 6, 10, 14, 18 

  

(c) point 3, 7, 11, 15, 19 (d) point 4, 8, 12, 16, 20 

Figure 9. Trajectories with the standard deviation on the right image plane 

 

4 DISCUSSION AND CONCLUSION 
 

Observing Figure 7, the average differences are varying among different image points, and the image points near the 

center of image usually have the smaller differences. Comparing the average differences with the incident angles 

(figure 8), it is shown that the amount of the differences might be related to the value of incident angles. However, 

this correlation remains unclear now.  

 

In the second part of the experiment, we propagated the error of the distance from the perspective center to the 

interface under the parallel stereo-pair setting. In figure 9 (a-d), we could observe that the left side of the images have 
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larger standard deviation than the right side of the image, but the standard deviation suddenly bounces off at a point, 

and starts to increase. This trend is same on four of the figures; however, the values of the standard deviation are not 

the same. In figure 9 (a)(d), the largest value is approximately 8.5μm; in contrast, the largest value in figure 9 (b)(c) 

is only 2μm, which might be within a sub-pixel level. When we conduct the image dense matching, the sub-pixel 

value of error is neglectable. 

 
To sum up, based on the coplanar condition under the axial camera system, equation (9) can be well applied to 

compute the curve trajectory, and also analyze the error of trajectories. However, the results in chapter 3 are not 

enough to summarize the characteristic of the curve trajectory and the behavior of the influential factors. Therefore, 

we will conduct more experiment including different camera setting, different influential factors to meet the needs of 

the real-life underwater task. 
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