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Abstract: Monitoring carbon storage in the forest is important for tracking ecosystem functionalities and climate 

change impacts. Estimation of GPP and study of the carbon cycle in Mongolia is essential. The main aim of this study 

is to develop an estimation approach for monitoring GPP (Gross Primary Production) for Mongolian forests using 

satellite data. GPP takes into account how much carbon dioxide (CO2) is taken in by vegetation during photosynthesis 

GPP and how much CO2 is given off during respiration, which is the process by which organisms use food to produce 

energy. The study focused on the Remote Sensing data and biomass data from ground truth measurements in 2018. 

Output MONGPP for 2000-2020 data were related to NDVI and LST from MODIS and agreement was 69% and 41% 

respectively. Thus, the estimation of carbon stocks of different climate zones would help in appropriate decision-

making on carbon management in the region. This study will contribute to understanding the dynamics of carbon 

stocks in relation to the key factors for the sustainable management of forest carbon. 

Keywords: GPP (Gross Primary Production), NDVI (Normalized Different Vegetation Index), LST (Land Surface 

Temperature) 

1. INTRODUCTION

Forest cover is around 30% of the Earth’s total surface area, and contains 19% of the Earth’s overall biomass and 

carbon pool (Kindermann et al., 2008; FAO and UNEP 2020). Forest act as the key carbon pool for the earth and store 

greater biomass and soil carbon than any natural ecosystem and atmosphere (Popkin, 2019; Pugh et al., 2019; Liu et 

al., 2020; Favero et al., 2020; Yam et al., 2021). The carbon-sequestration capacity of forests accounts for 76–98% of 

the entire terrestrial ecosystem (Cheng et al., 2009) and is vital for reducing global warming caused by carbon dioxide 

concentration (Wang et al., 2013). Forests play an important role in storing CO2 in the global carbon balance, thereby 

combating adverse global climate change among other ecosystem services (Albrecht et al., 2003; Houghton et al., 

2007; Heimann et al., 2008; Chave et al., 2014Liu et al., 2018).  

Carbon dioxide (CO2) is one of the greenhouse gases, and its increasing concentration in the atmosphere leads to 

global warming and climate change. Forest are the lifeline of the world's human population, which helps to mitigate 

the ever-increasing atmospheric CO2 concentration. Among the most acclaimed ecosystem services provided by 

forests are atmospheric carbon (CO2) sequestration and its storage (Canadell and Raupach 2008). This service is of 

strategic importance in mitigating ongoing climate change because it acts directly in controlling global warming 

(Bonan 2008). Nevertheless, CO2 stocks in forest biomass decreased globally mainly because of a reduction in the 

global forest cover. Also, the basic elements of forest ecosystems are decreasing and degrading due to industrialization, 

urbanization, and human activities all over the world. Deforestation has altered the concentration of greenhouse gases 

in the atmosphere, thereby affecting climate and biodiversity, and becoming a threat by changing the global CO2 cycle 

(Harris et al. 2012). Deforestation and forest degradation typically account for 17-20% of the world's greenhouse gas 

(GHG) emissions (Albrecht et al., 2003; Bhishma et al., 2010; FAO, 2005; FAO, 2012; Ngo K et al., 2013). Carbon 

dioxide (CO2), which is partly released as a result of forest degradation, contributes to about 60% of the anthropogenic 

greenhouse effects and climate change (Pierzynski et al., 2005; Hendri et al., 2014). Currently, climate change is a 

global concern, and forests play a vital role in the regulation and mitigation of climate change by reducing CO2 

concentrations in the atmosphere (Streck et al., 2006; Brack et al., 2019; Ali et al., 2020; United Nations Framework 

Convention on Climate Change., 2014; 2020; Burman et al., 2021). And climate change, which is now a major global 

challenge, is creating much evidence of irreversible environmental impacts (FAO, 2012; Pierzynski et al., 2005; FC 

(Forestry Commission), 2011). Forest ecosystems play an important role in global biogeochemical cycles and climate 

change mitigation (Lal and Lodhyal, 2015; Brienen et al., 2015; Atsbha et al., 2019). This kind of information also 
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contributes toward atmospheric carbon reduction targets as part of international obligations (UNFCCC 2014; Sahu et 

al., 2016; Mayer et al., 2020). Increasing forest carbon storage can significantly contribute to maintaining the global 

carbon balance and mitigating climate change (Fu, Y. 2018; Liu et al., 2020). 

Forest CO2 storage is an expanding research topic that addresses local and global strategies for the reduction of 

emissions of CO2 into the atmosphere (Stavins et al., 2005; Sheikh et al., 2014). However, there are few studies that 

quantify CO2 storage in forests worldwide (Chave et al., 2014; Gibbs et al.,2007; Brown et al., 1997; Nelson et al., 

199; Chave et al., 2005; Basuki et al., 2009; Navar et al., 2009; Henry et al., 2010; Beets et al., 2012), and many forests 

are unexplored (Jara et al., 2014; Ensslin et al., 2015). Therefore, we investigated the appropriate methodology for 

studying MONGPP in Mongolia using the ARIMA model. 

2. STUDY AREA AND DATA  

Study Area 

Mongolia is a region with a continental climate, fragile nature, and semi-arid and dry climate. The study area is Bulgan 

province one of the northern parts of Mongolia (Figure 1). This area has a subarctic climate where the absolute 

temperature is +34,8 ℃ in summer, the absolute temperature is -45℃ during winter. The average annual precipitation 

is 324 mm in this area. We used the ground truth measurement data for August, 2018 from the Bulgan province. 

 

Figure 1. Location map of the Bulgan province of Mongolia. 

Data 

Terrestrial biological productivity, MODIS’ Gross Primary Production (GPP) product, is important both practically 

and theoretically. Carbon cycle models are closely tied to global climate models, and regular measurements of gross 

and GPP are essential for both (https://modis.gsfc.nasa.gov/data). GPP estimation using the MODIS-GPP products 

MOD17A2HGF-006 collection 5.1 (https://lpdaac.usgs.gov/) was used in this research to evaluate MONGPP.  

3. METHODOLOGY  

Autoregressive (AR), Integrated (I), and Moving Average (MA) ARIMA model was applied to develop an estimation 

approach for MONGPP in the Mongolian forest zone. Equations 1 and 2 from the seasonal ARIMA were used to 

develop MONGPP model. The AR (p) model is defined as: 

𝑋𝑡 = 𝑐 + 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝑢𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖 + 𝑢𝑡

𝑝

𝑖=1

 (1) 

https://lpdaac.usgs.gov/
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where φ1, φ2, …, φn illustrate the autoregressive coefficients, c is a constant, and ut demonstrates white noise. In the 

autoregressive model of order p, the value of the time series at t, Xt depends upon the previous p-values and random 

disturbance (the stochastic part).  

𝑋𝑡 = 0,7079 + 1.7215𝑋𝑡−1 − 0.9886𝑋𝑡−2 − 1.0831𝜀𝑡−3 − 0.3202𝜀𝑡−2 + 0.6237𝜀𝑡−1 + 𝜀𝑡        (2) 

where 𝑋𝑡 is the value of GPP at time 𝑡 and 𝜀𝑡 is the error term at time 𝑡. Equation (2) was used to create a map for 

MONGPP in 2020. 

Multiple linear regression was used to find relationship among MONGPP, NDVI and LST. 

If the joint distribution function of a random vector (X, Y) is equal to the product of its respective distribution functions 

for any number x, y, then the variables X and Y are said to be independent. Otherwise, they are called dependent 

variables. Englishman Francis Galton (1822-1911) first coined the term regression when he studied the relationship 

between child and parent height. If the dependent variable 𝑦 examines the relationship between only one explanatory 

variable, it is called a simple regression. The pattern of transformation of a phenomenon can depend on many factors. 

If the relationship between the dependent variable 𝑦 (𝑥1, 𝑥2,…, 𝑥𝑛) is studied, it is called multivariate regression 

analysis (Makhgal et al., 2015).  

A general linear regression model equation 3 was used for the analysis.  

𝑌 = 𝛽0 + 𝛽1𝑥1+ 𝛽2 𝑥2+ ⋯ + 𝛽𝑛 𝑥𝑛+ 𝜀                            (3) 

Энд 𝑦 −  Dependent variable 

𝛽0, − Intercept 

𝛽1,…, 𝛽𝑛− Coefficient of regression, 

 𝑥1, 𝑥2, … , 𝑥𝑛 − Independent variable 

𝜀 –  Disturbance error  

4. ANALYSIS  

The detailed distribution of average vegetation growing season GPP for 2000–2020 is shown the Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Spatial distribution of GPP for growing season 2000-2020. 

 

 

 

javzandulam.b
Placed Image



Based on equation (2), we received MONGPP in figure 3. 

 

Figure 3.  MONGPP for Forest zone for 2000-2020. 

We collected 80 points for estimated MONGPP and GPP, then examined their relationships for forest zone (Figure 4). 

Figure 4. Correlation between the GPP and MONGPP. 

There are strong positive relationships between MONGPP and GPP (r2=0.71) for forest zone. This comparison reveals 

that the selected approach can simulate the dynamic change of GPP in the study area. Figure 5 shows the relationship 

between the MONGPP, NDVI and LST for Mongolia for the 2020 year. 

 

       

Figure 5. (a) relationship between MONGPP and NDVI, (b) relationship between MONGPP and LST. 
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Multiple linear regression was applied to determine relationships among NDVI, LST and MONGPP from the approach 

and the result was statistically significant at p < 0.0001 (NDVI) and p < 0.0005 (LST) (Table 1). 

Table 1. Result of linear regression 

Variable Coefficient Std. Error t-Statistics Prob. R Square Observations 
 

Interception -0.43461 0.219576 -1.97931 0.051356    

NDVI 4.486093 0.26372 17.01079 8.44E-28 0.7914 80  

LST 0.050102 0.005398 9.282023 3.43E-14    

 

5. RESULT AND CONCLUSION 

To monitor Gross Primary Production in Mongolia, we used MODIS GPP 1km product. Monitoring carbon storage 

in forest resources is important for tracking ecosystem functionalities and climate change impacts. We conclude that 

determining GPP for the past, present is important for Mongolia. The relationship between output MONGPP and GPP 

was 71% for the forest zone. Multiple linear regression analysis describes a good agreement which is 79%. In further 

research, we will consider general data of land cover, satellite data, and economic, statistic data for GPP estimation. 
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