
                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 1 of 15 
 

A Deep Learning and UAV Technology-Based Approach to Wildlife 

Monitoring 

Guoqing Zhang
1
, Wei Luo

1,2,3,*
, Guohong Li

1,2,3
, Ruiyin Tang

1,2,3
, Xuqing Li

1,2,3
 and Bin Wen

1,2,3
 

1
North China Institute of Aerospace Engineering, Langfang 065000, China 

2
Aerospace Remote Sensing Information Processing and Application Collaborative Innovation Center 

of Hebei Province, Langfang 065000, China 

3
National Joint Engineering Research Center of Space Remote Sensing Information Application 

Technology, Langfang, China 

* luowei@radi.ac.cn  (*Corresponding author’s email only) 

ABSTRACT: The Qinghai Tibet Plateau's wildlife faces threats to their survival, like poaching. It is 

essential to provide an intelligent monitoring system to safeguard their lives. On the basis of this, this 

paper suggests a deep learning and UAV-based multi-target tracking system. First, based on the 

YOLOv7 detection method, the SimAM attention mechanism is implemented to boost the accuracy of 

object detection. Next, a unique Deep SORT-based appearance feature extraction network was 

suggested. In order to minimize the frequency with which target IDs are switched during tracking, this 

network incorporates the idea of convolutional structure reparameterization and constructs a full-size 

feature extraction module to extract the target's full-scale appearance features. In addition, a visual 

servo controller designed especially for UAVs to lessen the impact of rapid movement on tracking. 

Lastly, using a self-built dataset, experiments were carried out and compared with the most advanced 

multi-objective tracking algorithms available. The experimental findings demonstrate the great 

tracking accuracy of the system. For a total of 67.8% and 79.6%, MOTA and MOTP increased by 

6.7% and 3.7%, respectively, in contrast to the baseline method Deep SORT. This approach offers 

great technological support for preserving the diversity of wildlife by demonstrating reliability in 

complicated settings through thorough evaluation and analysis. 
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1 Introduction 

Procapra przewalskii, an endangered ungulate, thrives in elevated terrains and is one of 

the rare mammals adapted to high altitudes. It received classification as endangered in the 

1999 Red Book that details China's threatened fauna and veterinary species. Despite the 

existence of legal protections, Procapra przewalskii remains vulnerable to lucrative illegal 

hunting, driven by the high market demand for its fur. This poaching significantly contributes 

to the rapid decline in its numbers. The encroachment of human activities continues to 

degrade its natural habitats, further threatening its survival. In response, the Chinese 

authorities have set up a specific nature reserve for the species, where ongoing surveys are 

conducted to assess both the population and the condition of its habitat. The harsh conditions 
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of the high-altitude plateau, characterized by severe cold, reduced oxygen levels, and rugged 

terrain, pose significant challenges to these monitoring efforts (Luo et al., 2023). 

The advancement of UAV technology has initiated a transformative period for wildlife 

monitoring. UAVs that operate autonomously and are equipped with embedded computing 

systems have the capability to observe and identify distinct wildlife populations dynamically 

without human intervention (Luo et al., 2024). The application of sophisticated UAV 

platforms for extensive surveillance of diverse targets has emerged as an increasingly 

effective strategy. Owing to the progressive enhancements in deep learning (DL), its 

amalgamation with UAV technology has become prevalent in the domain of wildlife 

observation (Zhang et al., 2024). UAVs augmented with DL technologies are capable of 

processing extensive datasets instantaneously, thereby addressing the challenges associated 

with the low accuracy, complex models, and sluggish response times inherent in conventional 

machine learning approaches. This synergy significantly alleviates the labor-intensive and 

inefficacious aspects of monitoring wildlife, particularly in the demanding conditions of 

elevated terrains. 

Recent advances in DL, characterized by multi-layer neural networks (NNs) and fueled 

by extensive data, have revolutionized pattern recognition across several domains, including 

image classification (Jamil et al., 2022; Khan et al., 2022; Rawat et al., 2017). In particular, 

DL techniques have achieved high levels of precision in detecting targets (Han et al., 2018). 

Such techniques are commonly categorized into two distinct groups: the first includes two-

stage detectors like Regional Convolutional Neural Networks (RCNN) (Girshick et al., 2015), 

Faster-RCNN (Ren et al., 2015), and Mask-RCNN (He et al., 2017), which have markedly 

enhanced the precision of pinpointing targets. The second category comprises one-stage 

detectors, notably the YOLO series (Redmon et al., 2017; Redmon et al., 2020; Bochkovskiy 

et al., 2020), designed to amalgamate the processes of target classification and localization, 

thereby substantially boosting the speed of detection. As a result, the field of wildlife 

detection is evolving into one enriched with data, propelled by advancements in computer 

vision technology. This progress has facilitated the automated identification of various 

wildlife species (Duporge et al., 2021; Eikelboom et al., 2019; Gonçalves et al., 2020). 

In the domain of computer vision, multi-target tracking (MOT) is crucial, involving the 

identification of multiple targets within a video sequence, maintaining consistent IDs for each 

throughout, and documenting their movement paths. This technology has seen extensive 

application in tracking animals recently. (Sun et al., 2020) proposed an innovative approach 

by integrating multi-channel color features with pig silhouette data, thus advancing the 

precision of tracking mechanisms while preserving the efficiency required for real-time 

applications. (Xiao et al., 2019) enhanced pig identification techniques by leveraging color-

based data, employing a novel set of association rules termed DA-ACR to optimize tracking 

processes. Designing the underlying features for these methods involves substantial effort and 

demands precise environmental conditions, which are challenging to fulfill in real-world 

applications. (Zhang et al., 2021) enhanced the YOLO v3 network and integrated it with the 

Deep SORT algorithm for effective MOT of cows. (Tu et al., 2022) combined YOLO v5 with 

the improved Deep SORT algorithm to realize the tracking of pigs. These approaches adhere 

to the tracking-by-detection (TBD) paradigm where results from detectors feed into backend 

optimization algorithms like SORT (Bewley et al., 2016) and Deep SORT (Wojke et al., 

2017), which use Kalman filtering and the Hungarian algorithm for tracking. In this 

paradigm, frames with low detection scores are discarded to reduce processing demands, 

which facilitates matching in subsequent frames. This practice may lead to the omission of 

actual targets and fragmented trajectories, particularly in complex wildlife monitoring 

scenarios where obstacles and variable lighting conditions are common. This research is 
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dedicated to tracking wildlife populations in mountainous terrains, a task compounded by the 

harshness of the environment. 

Swift changes in UAV trajectories during wildlife surveillance can significantly modify 

the visual scope of the onboard camera, frequently resulting in interruptions in tracking or 

total loss of visual contact with the subject. With advancements in autonomous UAV 

technologies, extensive research has focused on image-based visual servoing. This approach 

allows UAVs to navigate and avoid obstacles using a single camera. The capability of UAVs 

to fly slowly, hover, move laterally, and maneuver in confined spaces enhances the 

effectiveness of visual servo control systems. Such systems are well-suited for tasks 

including inspection, surveillance, and environmental monitoring. Currently, various control 

methods are in use, such as adaptive control (Zhang et al., 2017), PID control (Subramanian 

et al., 2017), sliding model control (Ma et al., 2018), and neural network control (Guo et al., 

2017). Among these, the PID controller remains a widely used and effective choice despite its 

traditional nature. 

In conclusion, employing UAVs for wildlife surveillance in intricate and high-altitude 

conditions poses significant research challenges. This manuscript presents an UAV-based 

MOT system designed specifically for complex and crowded settings. The major 

contributions of this study are detailed as follows: 

1. The integration of the SimAM attention mechanism into the YOLOv7 detection 

framework significantly improves the precision of object detections by refining the algorithm 

ability to focus on relevant features within an image. 

2. The development of a novel appearance feature extraction network within the 

framework of Deep SORT, which incorporates convolutional structure reparameterization. 

This network establishes a comprehensive feature extraction module designed to decrease the 

frequency of target ID switches and to mitigate the impacts of occlusions during the tracking 

process. 

3. The design of a visual servo controller ensures automatic tracking by maintaining the 

target within the visual field of the UAV camera. 

This document is structured as follows: Section 2 delineates the scope, subjects, and 

methodologies employed in the study. Section 3 elaborates on and analyzes the experimental 

results. Section 4 provides a summary of the conclusions derived from the research. 

2 Materials and methods 

2.1 Materials 

2.1.1 Video acquisition 

The subject of the video analysis was Procapra przewalskii, captured around Qinghai 

Lake in Gonghe County, Qinghai Province. In June 2023, aerial footage was obtained using a 

P600 UAV operating at elevations between 30 and 50 meters. This aerial survey spanned an 

extensive region of 2100 km2 and effectively amassed substantial video data that depicted 

Procapra przewalskii within the designated study zone (Figure 1). 

 

Figure 1: Procapra przewalskii captured in the research area. 
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2.1.2 Dataset construction 

In the designated research area, select a dataset consisting of 20 video sequences 

featuring Procapra przewalskii to be utilized for detection and tracking purposes. Each of 

these datasets should encompass a total of 10 distinct video clips. These sequences have been 

established as benchmarks for determining the location and movements of Procapra 

przewalskii, and are subsequently analyzed using the YOLOv7 model. 

To improve the identification capabilities for Procapra przewalskii and enhance the 

resolution of fur texture details, a dataset consisting of 2400 images was compiled from 10 

distinct video sequences designated for object detection. This dataset was divided into sets for 

training, validation, and testing, following a distribution ratio of 7:2:1. At the same time, the 

YOLOv7 model was employed to refine model parameters and boost stability. 

In order to better track and monitor objects using the Deep SORT algorithm, a large 

dataset of common antelopes is needed to extract their appearance features. From 10 video 

sequences, frame images are captured every 10 frames. These images are then resized to 

uniform dimensions of 460 × 460 pixels in JPEG format, resulting in a total of 3000 images. 

The LabelImage software is utilized for annotating these images, storing them in XML 

format to form the core of the target tracking dataset. The dataset is partitioned into subsets 

for training, testing, and validation using ratios of 70%, 20%, and 10% respectively. 

2.2 Methods 

2.2.1 General overview 

Figure 2 illustrates the architecture of this article. Video sequences are input into the 

detection system to obtain the bounding box for the object. The tracking module employs 

parameterization techniques to forecast trajectories, which aids in constructing a 

comprehensive feature extraction bottleneck for effective MOT. 

 

Figure 2: Overall system architecture. 

2.2.2 Detector 

Contemporary MOT methodologies predominantly adhere to the detection-tracking 

framework. Accordingly, this research employs a similar detection-centric MOT approach, 

emphasizing detection as the fundamental initial phase. The objective of this study is the 

surveillance of densely populated wildlife areas. YOLOv7 has been chosen as the 

foundational algorithm due to its high accuracy and swift processing capabilities. The 

implementation of YOLOv7, conducted using PyTorch, ensures compatibility with embedded 

systems and mobile platforms. 

The YOLOv7 model architecture is segmented into three distinct sections: the input 

layer, the backbone, and the prediction head. At the initial stage, raw images undergo several 
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preprocessing techniques including data augmentation, dynamic resizing, and computation of 

adaptive anchor boxes, ultimately standardizing the image to a 460×460 RGB RGB format 

suitable for further processing. Within the backbone, multiple layers such as BConv, EELAN, 

and MPConv are utilized to decrease spatial dimensions, augment channel capacities, and 

perform feature extraction, resulting in a three-tiered feature map. The head of the model 

integrates an SPPCPC layer, additional BConv layers, EELAN-H layers, MPCnv layers, 

Catconv layers, and a RepVGG block, all of which collaborate to output three distinct feature 

map layers using the backbone processing capabilities. The three principal tasks in image 

detection—namely classification, differentiation between foreground and background, and 

bounding box estimation—are efficiently addressed by these layers. Computations for the 

final outcomes are executed by leveraging the synergy between the RepVGG block and the 

convolutional layers. 

Given the objective of this research to monitor a densely populated wildlife area where 

many subjects are occluded, it becomes essential to enhance the feature details in regions of 

occlusion. This focus ensures that even partially obscured subjects are identifiable, thereby 

increasing the accuracy of detection and setting a groundwork for future tracking of such 

targets. To this end, this manuscript introduces an efficient attention module for 

convolutional NNs, SimAM. Unlike conventional channel and spatial attention modules that 

necessitate additional parameters in the network, SimAM computes the 3D attention weights 

directly from the feature maps within a specific layer, also accounting for targets that are 

partially hidden. This module is seamlessly integrated into the head section of the YOLOv7 

architecture without altering the main structure of the network. The adapted YOLOv7 

architecture incorporating the SimAM module is depicted in Figure 3. 

 

Figure 3: Improved YOLOv7 network structure. 

Current methods in attention mechanisms typically compute weights in one or two 

dimensions from a feature matrix, designated as X. These weights are then uniformly applied 

across either the channel or spatial dimensions. In the case of channel attention, which is one-

dimensional, it differentiates among channels while treating all spatial locations identically. 

Spatial attention, which is two-dimensional, distinguishes among various locations but 

applies uniform treatment across all channels. This approach constrains their capacity to 

identify more nuanced discriminative features. The assignment of three-dimensional weights 
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to the network channels significantly reduces limitations, improving performance compared 

to conventional one-dimensional and two-dimensional attention mechanisms. The SimAM 

attention module computes these 3D weights autonomously. It ensures uniform color 

assignment across all channels, spatial positions, and elemental points within subgraphs. By 

incorporating the SimAM module, the network experiences a substantial improvement in 3D 

feature extraction, thus increasing the accuracy of detection. 

2.2.3 Tracker 

The Deep SORT algorithm augments the SORT algorithm by incorporating a similarity 

metric for evaluating appearance features of targets, coupled with a cascade matching 

mechanism. These enhancements reduce ID switches when targets are occluded and increase 

the overall robustness of the model. Originally, the SORT algorithm uses a Kalman filter to 

forecast the motion states of objects and applies the Intersection over Union (IOU) metric to 

assess data association (IOU Match), determined by comparing the predicted target bounding 

boxes against those produced by the network. The associations are finalized through the 

Hungarian algorithm, which is pivotal for maintaining continuous tracking of targets. The 

efficiency of the tracking process is markedly influenced by the capabilities of the feature 

extraction network, which is pivotal in capturing precise and comprehensive visual details of 

the subjects. Depicted in Figure 4, the architecture of the Deep SORT algorithm consists of 

two primary elements: the deep appearance descriptor branch and the motion prediction 

branch. The latter predicts the trajectory states through Kalman filtering, leveraging data from 

preceding frames to forecast the positions of targets in the subsequent frame. Discrepancies in 

space and time between the predicted trajectory and actual detections are quantified using the 

Mahalanobis distance. Operating as a straightforward convolutional network, the deep 

appearance descriptor branch undertakes image classification and distills appearance features 

from the detected frames into a vector of appearance features. The cosine distance metric is 

employed to evaluate the similarity of these feature vectors. Track segments are associated 

through a matching cascade algorithm that incorporates both cosine and martens distances. 

Finally, during the track management phase, the tracks are updated, initialized, and deleted. 

 

Figure 4: Deep SORT flowchart. 

This section introduces FSNet, which facilitates the extraction of target appearance 

features for MOT applications. Initially, the method of convolutional structure 

parameterization is described. This is followed by an explanation of the comprehensive 

feature extraction block and the subsequent feature aggregation module. 

Utilizing the principles outlined in the RepVGG framework (Ding et al., 2021), 

convolutional structure reparameterization separates the training network from the inference 

network. The methodology utilizes a configuration where a multi-branch convolutional 
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bottleneck is employed during training, with a transition to a single-branch convolutional 

bottleneck for the inference phase. A detailed representation of this architectural setup is 

provided in Figure 5. 

 

Figure 5: The MOT process in this study. 

REPLConv exhibits distinct configurations during its training and deployment phases. In 

the training phase, the architecture includes a branch composed of Lwtconv3x3+BN layer, 

alongside a separate BN branch. The outputs of these branches are combined, as depicted in 

Figure 6a. For deployment, the architecture is simplified by reparameterizing the branch 

parameters into the primary branch, utilizing only the Lwtconv3x3+BN as the output, 

illustrated in Figure 6b. The Lwtconv3x3 module integrates a Conv1x1, a DWConv3x3, a BN 

layer, and a ReLU activation. The DWConv3x3, as a depthwise separable convolution 

(Howard et al., 2017; Chollet et al., 2017), reduces parameter counts significantly compared 

to traditional convolution methods. For a given input tensor of dimensions 
cwhRx  , 

conventional convolutions compute parameters as cck 2

, where k represents the kernel 

size, and c the channel count. In contrast, depthwise separable convolutions calculate 

parameters as ccck 2

, where ck 2

 accounts for channel-wise convolution and cc   

for point-wise convolution. Figure 7 illustrates the Lwtconv3x3 structure. 

 

Figure 6: (a) The REPLConv structure during the training. (b) The REPLConv structure 

during the inference. 
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Figure 7: The structure of Lwtconv3×3. 

Full-scale feature extraction block. The architecture for extensive feature extraction is 

detailed by incorporating layers known as REPLConv, as depicted in Figure 7. This structure 

embraces a multi-branch design to facilitate the learning of features across various scales. 

Each branch is equipped with distinct REPLConv layers, enabling the differentiation in 

receptive fields, thus permitting the extraction of scale-specific features. Within this 

framework, the variable 't' denotes the number of layers stacked within the REPLConv 

configuration, influencing the receptive field size to be calculated as (2t+1) by (2t-1), 

provided t exceeds 1. Through a series of experiments, it has been established that setting t to 

4 optimizes the trade-off between network depth and the efficacy of feature extraction. This 

optimal setting allows for the assimilation of fine-scale features as well as the comprehension 

of spatial features over larger extents. Details of this configuration are illustrated in Figure 8. 

 

Figure 8: The structure of the full-scale feature extraction block. 

Function aggregation. The feature extraction module in each branch captures specific 

dimensions and scales of features but lacks comprehensiveness. To achieve a holistic feature 

integration, a Feature Dynamic Aggregation (FA) network architecture is introduced. This 

compact convolutional neural structure enhances feature synthesis across varying channel 

dimensions through several components: a global average pooling layer, a densely connected 

layer, and a layer that includes an activation function. 

2.2.4 Visual servo control 
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This research employs a servo control mechanism within a MOT, integrated with a UAV 

and a camera. The configuration encompasses four distinct control variables: lateral control, 

two vertical controls, and control over transverse angular velocity. 

The objective of lateral control is to keep the central frame of the camera aligned with 

the horizontal midpoint of the target. This is achieved through a PID controller, which 

processes three types of inputs: the cumulative horizontal displacement of each target as a 

proportional component, the difference in current and preceding central positions as a 

derivative component, and the total accumulated discrepancy as an integral component. 

The longitudinal control of the helicopter modifies the speeds for advancement and 

retreat by analyzing the bounding box heights of objects, which represent distances from the 

camera. This adjustment employs a PID controller that computes inputs for velocity 

adjustments by determining the total deviations between current heights and both maximum 

and minimum thresholds. Additionally, the controller calculates inputs based on the 

collective rate of changes in the heights across observed objects, serving as a derivative input 

for managing speed. 

The vertical control of the UAV adjusts the altitude within a predefined range. Unlike 

the response to lateral velocities, the system exhibits a slower reaction to low vertical 

velocities, facilitating more precise altitude regulation. Consequently, the altitude of the UAV 

typically remains unchanged immediately after the autopilot receives a command for vertical 

velocity. 

Yaw rate control allows a helicopter to pivot about its vertical axis, ensuring alignment 

perpendicular to a line that spans the extremities of objects within the camera field of view. 

The calculation of the yaw angle is based on the ratio of the horizontal distance to the image 

width, coupled with the elevation difference among object types relative to a standardized 

height. The computed angle undergoes modification by the processing time duration and is 

scaled by a predefined factor to establish the angular velocity necessary for traversal. 

3 Experimental results and discussion 

3.1 Experimental platform 

Table 1 presents the setup details of the experimental environment utilized in our study. 

Table 1: Experimental environment. 

Name Configuration information 

Operating system Windows 10 

Graphics card NVIDIA GeForce RTK 4070 

CPU AMD Ryzen 9 5900X 

Software Python 3.8，Pycharm 2020.1 

3.2 Evaluating indicator 

In the domain of target detection, models typically identify multiple categories of 

targets, with each category capable of being represented through a PR curve. This curve 

facilitates the computation of the Average Precision (AP) value, a numerical measure of the 

area beneath the PR curve. The mAP is determined by averaging the AP values across all 

target categories, as outlined in Eq. (1): 
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MOT accuracy (MOTA) serves as a comprehensive indicator of tracking efficacy, 

focusing on both object detection and trajectory continuity without considering the precision 

of object spatial location. As MOTA values escalate, tracking performance improves. The 

calculation of MOTA involves: 
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MOT precision (MOTP) measures the accuracy of positioning. An increased value of 

MOTP reflects improved accuracy, as determined by Eq. (3): 





tt

itit

C

d
MOTP

,,
                                                                  (3)  

The IDF1 metric, defined by Eq. (4), is the Identification F1 score which evaluates the 

accuracy of identity matches. This score comprises IDTP, the count of accurate identity 

matches, while IDFP and IDFN denote the counts of erroneous matches and failures to match 

identities, respectively. 
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FP denotes the number of alerts for errors related to the mis-predicted trajectories of 

objects. 

FN accounts for objects that were neither detected nor tracked. 

IDs reflect changes in the frequency of identity assignments. 

3.3 Benchmarking evaluation 

This study introduces a self-made dataset named Procapra przewalskii dataset for object 

detection tasks. The dataset was partitioned into designated training, validation, and test sets 

for model evaluation. Enhancements to the YOLOv7 model incorporated the SimAM 

attention mechanism, leading to a version termed the enhanced YOLOv7. Performance 

comparisons between the enhanced YOLOv7, the standard YOLOv7, and YOLOv5s models 

were meticulously conducted. The outcomes, detailed in Table 2, affirm the superiority of the 

enhanced YOLOv7 model developed in this research. 

Table 2: Accurate evaluation of YOLO series algorithms. 

Model Test size Precision↑(%) Recall↑(%) mAP↑(%) 

YOLOv5s 460 70.5 62.6 68.4 

YOLOv7(Wang et al., 

2023) 

460 82.8 68.7 72.8 

YOLOv7+SimAM 460 89.3 80.2 83.6 

As demonstrated in Table 2, the enhancement of our YOLOv7 model through the 

integration of the SimAM module has markedly elevated the detection precision, surpassing 

not only the original YOLOv7 but also achieving significant advancements over the 

YOLOv5s model. This substantiates the effectiveness of incorporating the SimAM module 

into the YOLOv7 framework. 
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Econometric evaluation demonstrates that the tracking algorithm introduced in this study 

exhibits superior performance when benchmarked against several leading counterparts. As 

evidenced in Table 3, this novel algorithm achieves the highest scores in terms of MOTA, 

MOTP, and IDF1 indicators. 

Table 3: Comparison analysis of outcomes using different methodologies. 

Model MOTA↑(%) MOTP↑(%) IDF1↑(%) FP↓ FN↓ IDs↓ 

SORT 46.8 65.1 46.1 13445 7846 334 

Deep SORT 61.1 75.9 58.3 10829 4979 115 

JDE (Wang et al., 

2021) 

61.8 76.7 60.9 10686 4863 235 

FairMOT (Zhang et al., 

2021) 

63.0 78.4 64.4 12683 2275 128 

Ours 67.8 79.6 65.8 9688 3359 95 

Meticulously evaluated the efficacy of several advanced models, underscoring their 

potential in wildlife tracking and surveillance systems. As evidenced in Table 3, the MOTA 

score for the SORT model significantly trails that of the Deep SORT model, which 

incorporates feature extraction networks. This discrepancy suggests that the integration of a 

feature extraction network enhances the extraction of more comprehensive target information 

during the tracking process, thereby elevating the MOTA during feature matching phases and 

facilitating precise target tracking and monitoring. In comparison to other models, ours excels 

in multiple metrics, including MOTA, MOTP, and IDF1. Our model shows an enhancement 

of 6.7% in MOTA, 3.7% in MOTP, and 7.5% in IDF1 over the baseline Deep SORT model. 

These increments confirm the superiority of our method. 

In this investigation, the utilization of a visual servo controller facilitated the adjustment 

of parameters concerning transverse, longitudinal, vertical, and yaw rate dimensions. This 

enhancement was specifically designed to improve the P600 intelligent UAV capabilities in 

detecting and tracking multiple maritime targets. Ordinarily, targets follow a linear trajectory, 

allowing for independent assessment of the controller. However, to fully evaluate its efficacy 

in all directions, an experiment with more intricate target movements was organized. For this 

purpose, two types of antelope were employed to test the UAV tracking precision. Procapra 

przewalskii were maneuvered along concentric arcs of varying radii to prevent their paths 

from intersecting with the UAV flight trajectory, as depicted in Figure 9. This arrangement 

facilitated a detailed analysis of the UAV proficiency in following targets on curved 

trajectories. 
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Figure 9: The flight paths of UAV (blue line) and the targets (purple and orange lines). 

Displayed on the left, three images capture the perspectives from the UAV at specific points 

labeled as ua, ub and uc. 

To further authenticate the yaw rate of the visual servo controller, this investigation 

proceeded along the trajectory depicted in Figure 9, where the starting point was marked with 

color-coded solid dots. Along the path of UAV P600, fifteen arrows were utilized to signify 

the orientation of the UAV axis at the moment. Each target path was adorned with fifteen 

hollow circles, each aligning with the arrows observed during the experimental phase. These 

specific instances were captured and illustrated in Figure 10, which also delineates the 

angular relationships between the connecting lines of the two objects and Xworld, as well as 

the angular trajectory between YUAV and Xworld. Here, YUAV refers to the longitudinal 

velocity of the UAV, whereas Xworld denotes the positive horizontal semi-axis of the 

established coordinate system for tracking the two targets. 

 

Figure 10: The sum of the angles formed by two connecting objects with an additional Π

/2, alongside the angular relationships between Xworld and YUAV compared to Xworld. 

In Figure 10, a maximum deviation of -0.362 radians between the UAV trajectory and 

that of the two targets was recorded at 26.352 seconds. This deviation can be attributed to the 

swift changes in the positions (Xworld,Yworld) of the targets, which the yaw rate of the 

visual servo controller could not promptly adjust to. In the final phases of the experiment, the 

controller maintained a consistent separation of approximately 0.25 radians. During the 

culmination of the process, it managed the YUAV in an orientation nearly orthogonal to the 

axis of the connection. These outcomes lend support to the efficacy of the vision servo 

controller. 

Figure 11 presents the outcomes of the algorithm tracking performance using actual 

Procapra przewalskii population data, highlighting the method efficacy in navigating intricate 

and crowded environments. 
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Figure 11: Actual tracking results in different scenarios. 

Utilizing the tracking outcomes from actual population data of Procapra przewalskii, the 

system outlined in this study is capable of performing MOT effectively even within densely 

populated and intricate environments, while maintaining a high degree of robustness. 

4 Conclusion 

This research introduces a sophisticated system for tracking multiple targets, employing 

unmanned aerial vehicles and advanced DL techniques. The system utilizes YOLOv7 

combined with the SimAM attention mechanism, enhancing the accuracy of object 

recognition. The system integrates an enhanced version of the DeepSORT algorithm by 

incorporating FSNet, a novel network that extracts multi-depth appearance features, ensuring 

comprehensive feature representation of targets. The study presents the development of a 

visual servo controller, designed to keep the targets within the UAV camera view, thereby 

automating the tracking process effectively. 

Through comparative analysis of different MOT algorithms, it was determined that the 

specified method outperforms others in terms of MOTA, MOTP, and IDF1 metrics. 

Comparison to the baseline Deep SORT, the newly implemented UAV-based MOT system 

demonstrated notable enhancements, achieving a 6.7% improvement in MOTA, a 3.7% 

increase in MOTP, and a 7.5% rise in IDF1. These results validate the efficacy of the 

proposed approach. In summary, UAVs employing this innovative method can effectively 

deter poaching by conducting real-time surveillance. This study is critically important and 

offers substantial promotional value for safeguarding the universal gazelle and its natural 

habitat. 
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