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Abstract: The National Physical Plan (NPP) of Sri Lanka, prepared by the National Physical
Planning Department (NPPD), is a strategic framework aimed at guiding the country’s physical and
spatial development, particularly over a long-term time horizon. The main objective of the plan is to
provide a broad national framework for planning and executing development activities, impacting Sri
Lanka’s physical environment and infrastructure. To achieve this objective, it is necessary to assess
development scenarios based on land use changes to determine whether the proposed policy
framework can be envisioned. Hence, this study aims at developing a land use simulation-based
decision framework using QGIS MOLUSCE plugin, for predicting land use change in accordance
with proposed projects outlined in the National Physical Plan 2023 — 2048. Previous studies utilizing
MOLUSCE predominantly focused on small-scale predictions, encountering limitations due to edge
effects in contexts where simulation model results are influenced by adjacent countries. However,
since Sri Lanka is an island nation, simulations can be conducted without external interferences,
thereby eliminating edge effects and yielding more realistic predictions. The methodology of this
study involves digitizing proposed infrastructure projects, particularly railway and expressway
projects, and creating predictive maps for 2028, 2035, and 2050 to demonstrate short-term, medium-
term, and long-term scenarios, respectively. Distance to water bodies, railway stations, main towns,
highway interchanges, slope, and population are the main factors considered in developing the land
use change model. Overall, this research addresses the critical need to assess the effectiveness, and
implications of proposed projects outlined in the NPP, providing insights into future land use
patterns, and supporting evidence-based policies for sustainable development in Sri Lanka.
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Introduction

The planning process in developing countries is predominately bounded by arbitrary and
subjective decisions, instead of predicted and validated futuristic decisions, due to lack of
technical know-how and the non - availability of effective tools (Wickramasuriya, 2007),
(Jayasinghe, Sano, Abenayake, & Mahanama, 2019). In Sri Lanka, the National Physical
Plan serves as a blueprint for future land use. It can identify three main Planning
categories in National Physical plan: short term, medium-term and long-term. Each policy
outlines goals and objectives aligned with its time frame. The challenge is the National
Physical Plan's dynamic nature, which is subject to revision without a concurrent
assessment of whether the current land use is consistent with the plan's proposed

outcomes. In the last decade, many land use models have evolved into tools that can be
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used to study land use change processes, conduct scenario studies or perform policy
analyses for real world cases (Aljoufie et al., 2013; Hellmann and Verburg, 2011; Stanilov
and Batty, 2011). The integration of land use simulation models into national physical
planning frameworks has emerged as a promising approach to forecast future land use
patterns and assess the impacts of policy interventions (Bacau et al., 2018). Models
provide an opportunity to explore possible future pathways for development in different
locations, at different scales, and under different conditions (Osman et al., 2018). In
Simulation models, the edge effect which is impacted by nearby nations becomes a
constraint. But because of Sri Lanka is an island nation, it is possible to run the simulation
without interference from outside sources, removing the edge effect while providing a
more realistic prediction. Another advantage is this simulation provides macro-level land
use predictions to overcome the edge effect. This study aims to answer questions, about
how proposed projects can achieve sustainable development goals, how resilient land use
plans are in the face of socio-economic uncertainties and how environmental integrity can
be preserved during rapid urbanization. By combining insights from Molusce based
simulations with existing knowledge this research hopes to provide information for
decision making and contribute to the creation of evidence-based policies for sustainable

land use management in Sri Lanka.

Literature Review

This literature review centers on two primary objectives. To identify the diverse mode of
land use simulations and the relevance of that simulation to the Sri Lakan context. further
that can deploy to assess Sri Lankas National Physical Plan to identify the driving factors
for the land use changes in the Macro level land use planning.

e Models of land use Simulations

A simulation is a model that mimics the functioning of an existing or suggested system
and can test various scenarios or adjustments to the process to provide evidence for
decision-making. Spatial simulation is a geo-statistical technique, which has great
potential as a tool for dealing with various problems associated with spatial uncertainty
(Al-Darwish et al., 2018). It provides methods and tools as spatial decision support
systems (SDSS), to assess different policy implications and to maximize
comprehensiveness of policy decisions. SDSS provides computerized support for
decision-making, when there is a geographic or spatial component to the decision. Spatial

simulation synonyms with urban simulation - thus, urban simulation models initially

Page 2 of 46



2024

¥
AC R S Asian Conference on Remote Sensing (ACRS 2024)

predicated on forecasting development at a cross section in time, were the first to adjust in
dealing with such dynamics (Batty, 2011); (Moghadam, 2019). Below are some land use
simulation models identified through literature reviews.
e Cellular Automata
Cellular Automata is a system of cells in an n-dimensional network in which n>1 are
discrete in terms of time and space. A cell represents a discrete moment and changes its
state using a set of rules, mainly determining the local transfer function depending on the
current state of the adjacent cells (Feng & Liu, 2013). It is updated individually based on
the number of adjacent cells at the previous moment (the state at tC1 is determined by the
state at t, but not the other way around) (Noszczyk, 2019). The major principle in CA is
that LULC can be explained by the current state of a cell and the change in the state of its
adjacent cells based on the principle of continuity of historical development and the result
of its surrounding influence (Lantman, et al., 2011). The advantage of CA is that it is one
of the simplest spatial modeling methods for LULC (Noszczyk, 2019).
e Markov chain model

The Markov chain (MC) analysis is a stochastic modeling approach that has been used
widely in urban growth modeling (Halmy et al., 2015). It works under the physics
assumption that future state depends only on the current state (Bell and Hinojosa, 1977).
The MC method monitors the temporal change in land-use type depending on transition
matrices (Guan et al., 2011). In land-use, the Markov chain uses matrices to represent
changes between land-use categories, and its history dates to Burnham's 1973 study
(Lantman, et al., 2011). This is a model of trend forecasting, as if current artificial factors
continue, the results would gradually change along a certain trend, tend to stabilize over a
long time and finally reach a balanced state (Kumar, Radhakrishnan, & Mathew, 2014).
The Markov chain model describes land-use changes from one period to another and uses
it to predict future changes (Noszczyk, 2019). For ecological modelling, monitoring
changes and trends, and projecting future scenarios at different spatial scales, the Markov
model is well-known and reliable. Using transition potential matrices for each LULC
class, it predicts possible changes in Land Use and Land Cover (LULC) from one time
cycle (t = 1) to the next (t + 1). Within the model, these modifications are considered
stochastic processes. The incapacity of this model to offer the spatial distribution of
LULC change activities, however, is a serious drawback. Using the below-mentioned

equation, future simulation of LULC changes can be calculated:
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In this equation, S(t) represents the state of the system at time t, while S(t + 1) represents
the state of the system at the next time step (t + 1). The transition probability matrix from
the current state i to the next time state j is denoted as Pij. Numerous research studies have
utilized the Markov chain model to evaluate future Land Use and Land Cover (LULC)
scenarios.

This is one of the most effective methods for estimating any land-use transfer due to its
efficient algorithm which wuses transition stochastic matrix changes (Kumar,
Radhakrishnan, & Mathew, 2014). The Markov process assumes that a future state can be
emulated based on a previous one. The major drawback of this technique is the neglect of
the spatial aspect (Noszczyk, 2019). Markov models may be combined with CA for
LUCC modeling, as evidenced by joint CA Markov models (Li and Reynolds 1997;
Balzter, Braun, and Kohler 1998).

e PLUS Model
PLUS model mainly contains two major functions: land expansion analysis strategy
(LEAS) and the CA based on multiple random seeds (Zhang et al., 2022). Multiple
objective programming (MOP) was used to determine the optimal land use structures
under different scenarios. For example, previous land resource planning studies, including
those of Gibert et al. (1985), Diamond and Wright (1989), Chang et al. (1995), Seppelt
and Voinov (2003), and Stewart et al. (2004), used mathematical programming to analyze
the connection between objectives and find the optimal solution based on the given
conditions as well as decision makers’ requirements. The PLUS (Pattern, Land Use, and
Simultaneity) Model is a simulation model used in urban planning and land-use
management to forecast future land-use changes based on current patterns and trends.
Developed by Paul Waddell and his colleagues, the PLUS Model integrates various

factors such as demographic shifts, economic development, transportation networks, and

Page 4 of 46



2024

4
AC R S Asian Conference on Remote Sensing (ACRS 2024)

environmental considerations to simulate the dynamics of land-use changes over time.
Research by Waddell (2002) introduced the PLUS Model as a comprehensive framework
for understanding and predicting urban growth patterns. The model incorporates spatially
explicit data and employs sophisticated algorithms to simulate the complex interactions
between different land-use categories and socio-economic factors. By capturing the
simultaneous effects of multiple variables, the PLUS Model offers valuable insights into
the potential impacts of different policy interventions and urban development scenarios.
According to Waddell et al. (2003), the PLUS Model represents a significant advancement
in land-use modeling, allowing planners and policymakers to assess the long-term
consequences of their decisions and identify strategies for sustainable development. The
model's ability to incorporate feedback loops and account for spatial dependencies makes
it a valuable tool for urban planners seeking to optimize land-use allocation and mitigate
adverse environmental impacts. Additionally, research by Khan et al. (2018) highlights
the versatility of the PLUS Model in addressing diverse urban planning challenges,
ranging from transportation planning to environmental management. By integrating data-
driven analysis with scenario-based simulations, the model facilitates informed decision-
making and promotes collaboration among stakeholders in the planning process. The
PLUS Model, as described by Waddell (2002) and Waddell et al. (2003), stands as a
sophisticated simulation tool that enables planners and policymakers to anticipate and
respond to the dynamic nature of urban growth and land-use change. Its holistic approach
to modeling and simulation offers valuable insights into the complex interactions shaping
urban landscapes, thereby supporting more informed and sustainable development

strategies.

e CA ANN model
Artificial Neural Network (ANN) is one of the most powerful models that depend on
artificial intelligence. It can be defined simply as nodes or neurons that are managed in
multiple layers (Mohammady et al., 2014). ANN can capture the non-linear relationships
between factors and deal with complex patterns such as urban growth and changes in
land-use with great efficiency. Moreover, its provision of non-linearities and its ability to
deal with missing or fuzzy data as well (Aburas et al., 2019). For simulation purposes,
ANN model identifies changes in land-use and other patterns using data that illustrate the
behavioral dynamics of land-use phenomenon (Mohammady et al., 2014). Therefore, it

can detect potential interdependencies through implied driving forces (Shafizadeh-
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Moghadam et al., 2017a). Moreover, the significance of using ANN model is that the
model illustrates the effects of each driving factor used in the simulation operation and
specifies which factors affect the land change more to give a clear understanding of the

land change process (Park et al., 2011).

Identification of influence factors for land use changes
The literature reviews have identified several key factors influencing land use change,

categorized into three main spatial influencing categories as physical factors,
transportation infrastructure, and socioeconomic factors.

Table 1 Literature review Spatial Influencing Factors.

Source 2 Compile by author.

Spatial
Influencing Spatial Influencing Factors Reference
Categories

Distance from Water Bodies | Wang et al. (2001) Integrating water-quality
management and land-use planning in a
watershed context. Journal of Environmental
Management, 61(1), 25-36.

Slope Becker et al. (2007) Ecological and land use
studies along elevational gradients. Mountain
Research and Development, 27(1), 58-65.

Physical Factors

Distance from Highway Moon Jr et al. (1988) Modelling land use
Interchanges changes around non-urban interstate highway
interchanges. Land Use Poalicy, 5(4), 394-
Transportation 407.
| P Distance from Railway Badoe et al. (2000) Transportation—land-use
nfrastructure . . N e
Stations interaction: empirical findings in North

America, and their implications for
modeling. Transportation Research Part D:
Transport and Environment, 5(4), 235-263.
Population Meyer et al. (1992) Human population

growth and global land-use/cover change.
Annual Review of Ecology and Systematics,
23(1), 39-61.

Distance from Main Towns | Surya et al. (2020) Land use change, spatial
interaction, and sustainable development in
the metropolitan urban areas, South Sulawesi
Province, Indonesia. Land, 9(3), 95.

Socioeconomic
Factors
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Figure 1 Methodology.

Results and
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prediction for 2021

land use predictions for the year 2021 Run Simulation
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the
Kappa
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prominent software programs: Terrset Inaccurate

Geospatial Monitoring and Modeling
Software, and the QGIS Molusce

Accurate
v

plugin. Land use
Prediction for

To validate the accuracy of the results, software selection

the original 2021 land use layer of Sri Figure 2 Software Selection

Lanka was utilized. This validation Source 3 Compile by author:

process involved the use of two software programs: Terrset Geospatial Monitoring and
Modeling Software and the QGIS Molusce plugin. Initially, the 2017 land use raster file
was used as the starting point, with the 2019 layer serving as the current data in both
software platforms. These layers were then utilized to predict the land use for the year
2021. It's important to note that the land use images were sourced from ESA Sentinel-2
imagery at 10m resolution. Subsequently, the predicted 2021 land use results from each

software were compared with the original 2021 land use layer.

[ Initial Layer ] (__Final Layer | [__Prediction ]

[ LULC 2017 } [:j] [ LULC 2019 ]I::)[ 2021 J
Figure 2 2021 Modeling Process

This comparison was crucial for
evaluating the accuracy of the
predictions against the actual data.

Through  this  comprehensive

Land Use Map of Sri Lanka 2017

validation process, the T Ja02d . 221 A

performance of the models in both : S .
Figure 3 Land use map of Figure 4 Land use Map of

Terrset and QGIS Molusce was Sri Lanka 2017 Sri Lanka 2019
assessed, ensuring the reliability of the findings for further analysis and interpretation in

the research.
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Landuse data of Sri Lanka 2021
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Figure 6 Land use data of Sri Lanka 2021

Terrset Geospatial Monitoring and Modeling System for LULC 2021.
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QGIS Molusce Plugin land use prediction System for LULC 2021
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Figure 8 Process of QGIS Molusce Plugin land use prediction System for LULC
2021.

Source 5 Compile by author.
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Figure 10 Forest Model
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In 2021, land use in Sri Lanka exhibited a diverse distribution, with water bodies
comprising 3% of the total land area, while vegetation covered the majority at 54%.
Agriculture accounted for 18% of land use, reflecting the country's significant reliance on
farming practices. Urban areas constituted 15% of the landscape, highlighting ongoing
urbanization trends. The remaining 10% was categorized as 'Other," encompassing various
land uses such as barren land or infrastructure. This breakdown provides valuable insights

into the spatial distribution of land utilization across different sectors in Sri Lanka.

Page 12 of 46



2024

o>
AC R S Asian Conference on Remote Sensing (ACRS 2024)

Table 2 Comparison of Land Use Classification Results by Molusce, ANN and Forest Models

for 2021.
Mistake Mistake (%0)
Molusc terrset Molusce terrset
.. e
%2'222/6" 2021( | 2021(%) | 2021(% |  2021(%)
0) o
%0) )
AN | Forest ANN | Forest
N Model Model
Water 3.30 -1.00 - -0.64 -30.23 | -6.75 | -19.25
0.22
Vegetation 53.91 -2.96 - -5.84 -5.49 - -10.84
6.04 11.21
Agriculture 18.32 -2.54 - -1.26 -13.87 | -6.54 | -6.86
1.20
Urban 14.92 225 | 272 | 272 15.09 | 18.23 | 18.25
Other 9.55 4.24 4,74 5.01 44.43 49.66 | 52.48
100.00
Mistake | 9.93 43.39 | 33.78
%
Accura | 90.07 | 56.61 | 66.22
cy%
Kappa 0.90 0.57 0.66
Value

Source 6 Compile by author.
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Table 3 (Zach, 2021)

Kappa Value Interpretation

0 No agreement
0.10-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61 -0.80 Substantial agreement
1 Perfect agreement

Kappa (Overall) >=0.6 is considered as
the satisfactory result and acceptable
(Saputra & lee, 2019).Based on the
provided data, Molusce outperforms
Terrset in terms of accuracy, with an
accuracy percentage of 90.07% (figure 13)
56.61%.

Additionally, Molusce achieves a higher

compared to  Terrset's

Accuracy Assessment of ANN and Forest Model for
Molusce and terrset Prediction (2021)

60
: | I I
” . .
0
ANN
)

Forest Model
2021(%; 2021(%)
Molusce terrset

W Mistake% B Acuuracy%

Figure 3 Accuracy Assessment of ANN and
Forest Model for Molusce and terrset

kappa value of 0.90, indicating substantial agreement beyond chance, whereas Terrset lags

behind with a kappa value of 0.57. When examining the mistakes made by each model,

Molusce demonstrates a lower mistake percentage of 9.93% compared to Terrset's

43.39%. These findings suggest that Molusce is the most accurate simulation model

among the two, providing more reliable and consistent results for the given dataset.

Therefore, it is decided to continue the study using Molusce Plugin in QGIS.

Validation Assesment

Other
Urban

Agriculture

Landuse

Vegetation

Water

=]

terrset 2021(%) Forest Model

10 20

terrset 2021(%) ANN  m Molusce 2021(%)

30 40 50 60

Percentage(%)

m Original 2021(%)

Figure 12 Model Validation
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Analysis and Interpretation
Model Simulation
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|
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Results and
Discussion —
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Sl
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Distance From the
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Figure 13 Model Simulation Process

Source 7 Compile by author.

After the selection of the appropriate software, the QGIS Molusce Plugin, the proposed
road and infrastructure projects were digitized for simulation. The simulation spans three
years: 2028, 2035, and 2050, with distinct sets of digitized projects for each year. This
approach allows for the assessment of land use dynamics over time, considering the
evolving infrastructure landscape and its potential impact on urban development.

f L. y . / / .. / i . / i .. f . ]

/ Initial Layer | Final Layer | |/ Initial Layer | | Final Layer | | Initial Layer | | Final Layer |/

2018 ‘ 2023 / / 2021 / / 2028 / / 2020 / / 2035 /
Prediction LULC Prediction LULC Prediction LULC

2028 2035 2050

Figure 14 Prediction Process

Source 8 Compile by author.
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a) Model Structure for Year 2028

i NPP Proposed
Distance From the Projects
water Bodies
INITIAL * Central Expressway Project
LAYER Distance to Existing and . Kadawatha Mirigama
LULC 2018 [ | Proposed Highway Interchanges «  Extension of the Express way
Spatial : __ from Katunayake to
Variables Distance to E)_ustmg ‘and . Kochchikade
Proposed Railway line
FINAL
LAYER Projected
LULC 2023 Population .
* Colombo-Malabe LRT line
* Maradana-Battaramulla
Slope railway line extension
» Extension to Battaramulla-
Kaduwel
R Distance From the . A\i'i;ls‘;,:v:lla-Ratna ura
LULC 2028 Main Towns : : .p
railway line extension
* Mahao — Norochchole

Figure 15 Model Structure for 2028

Source 9 Compile by author.

In this phase of the research, ongoing and proposed projects falling within the timeframe
of 2023 to 2028 are being digitized and incorporated into the simulation model. By
digitizing these projects, including infrastructure initiatives and urban development
projects, their spatial representation n is accurately captured. Subsequently, through
simulation, the anticipated impacts of these projects on land use and transportation
dynamics are assessed. The focus is on generating a predictive map for the year 2028,
reflecting the cumulative effects of these initiatives on the urban landscape.

Table 4 Proposed NPP projects for 2028.

Type of
Infrastructure 2028 Projects (Short Term)

Colombo-Malabe LRT line
Maradana-Battaramulla railway line extension
Railway Projects Extension to Battaramulla-Kaduwela
Awissawella-Ratnapura railway line extension

Mahao — Norochchole

Central Expressway Project Kadawatha Mirigama
Road Infrastructure Extension of the Express way from Katunayake to
Projects Kochchikade
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The map displays (Figure 16) the digitized representation
of proposed projects, along with the reclassified railway
line map, intended for integration into the Molusce
software as spatial variables. The proposed projects,
encompassing developments outlined in the National
Physical Plan (NPP), have been delineated and overlaid
onto the railway infrastructure map, which has been

reclassified to facilitate its utilization as a spatial variable

within the Molusce simulation framework. This | .- gt ettt [
combined dataset serves as a foundational component for | - ———** :Ai:
conducting land use change simulations, enabling the Figure 16 Existing
assessment of potential impacts and interactions between Railway Lines and

. . : Pr railway lin
proposed projects and existing spatial features such as oposelc\ilpz; 20?8 es by

railway lines.

In addition to the digitized proposed projects and
""""""""""""""" reclassified railway line map, projected population data
for the year 2023 has been incorporated as a spatial
variable within the Molusce simulation framework.
This projected population dataset serves as a crucial

input for the simulation model, providing insights into

L[ [ |36
ok

anticipated population distribution and density across

the study area.

P
& f} o

Figure 17 Projected
Population Map of Sri
Lanka 2023
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Combined with the digitized proposed road
mmmmmmmmmmmmmm v projects for the year 2028, a reclassified raster
“ representing these road developments has
been generated to incorporate into the spatial
variables utilized within the Molusce
simulation framework. By integrating this
reclassified raster dataset into the Molusce
model, it becomes possible to assess the
potential impacts of proposed road

infrastructure expansions on land use patterns

and transportation networks. The inclusion of

[ isting and Broposed Highay road projects as a spatial variable enables the

| Road Network by NPP in 2028 $ri Lanka N

T2024 A simulation of various scenarios, allowing

[

researchers and policymakers to evaluate the

Figure 18 Existing and Proposed consequences of different development
Highway Network by NPP 2028

pathways on urban growth, accessibility, and
environmental sustainability. This approach enhances the comprehensiveness of the
simulation analysis.

The digitized proposed projects outlined in the 2023 National Physical Plan (NPP) have
been integrated into the spatial variables utilized within the Molusce simulation
framework. These projects, slated for completion by 2028, encompass a range of
infrastructural developments, including road expansions, railway line extensions, and
urban amenities. By incorporating these proposed projects into the spatial variables, the
Molusce model can account for their potential impacts on land use dynamics and

transportation networks.
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Figure 19 land use map of Sri Lanka
2018.

Furthermore, spatial variables such as distance
from water bodies, existing and proposed
highway interchanges, railway lines, slope,
proximity to main towns, and projected
population have been utilized to enhance the
accuracy and comprehensiveness of the
simulation analysis. The 2018 layer serves as the
initial layer in Molusce, while the 2023 layer and
the final layer represent the conditions in 2023
and the predicted outcomes for 2028,
respectively. This approach enables researchers
to simulate various scenarios and assess the
implications of proposed developments on urban
growth, accessibility, and environmental

sustainability.

Figure 20 land use map of Sri Lanka
2023.

Predicted Land use Map of Sti Lanka 2028

£ Fnton ol Fe. Ui

N
2024 A

Figure 21 land use Prediction map of Sri
Lanka 2028
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Table 5 Landuse data 2018,2023 and predicted 2028

Original | Original | Predicted o o o
Land Use Type 2021 2018 2028 2018(%) | 2023(%0) | 2028(%0)
Water 2179 1567 1871.52 2 3 3
Vegetation 35599 35062 35139.73 53 53 53
Agriculture 12097 9666 12126.51 15 17 18
Urban 9853 9071 10520.31 14 15 16
Other 6309 10392 6404.12 16 11 10
Source 10 Compile by author.
Land use Percentages(%) in 2018 in Sri Lanka Land use Percentages(%) in 2023 in Sri Lanka
Other Wzau;aer Other Waaut/ner

11%

16%

Urban
15%
Urban
14%

Vegetation
53%

Vegetation
53%

Agriculture

Agriculture 18%

15%

® Water = Vegetation Urban = Other = Water = Vegetation = Agriculture Urban = Other

= Agriculture

Figure 23 Land use Percentages (%) in
2023 in Sri Lanka

Figure 22 Land use Percentages (%) in
2018 in Sri Lanka

Predicted Land use Percentages(%) in 2028 in Sri
Lanka

Water
3%

Other
10%

Urban
16%

Vegetation
53%

Agriculture
18%

= Water = Vegetation = Agriculture Urban = Other

Figure 24 Predicted land use percentage (%) in 2028 in Sri
Lanka
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b) Model Structure for Year 2035

NPP Proposed
Distance From the Projects
water Bodies
INITIAL
LAYER Distance to Existing and
LULC 2021 [ Proposed Highway Interchanges * Central Expressway
(Kurunegala-Dambulla
Spatial : —
Variables Distance to E{ustmg‘and
Proposed Railway line
FINAL
LAYER Projected
LULC 2028 Population * Kandy — Kurunegala
* Beliatta-Katharagama
* Ratnapura— Hambantota
Slope
PREDICTD Distance From the
LULC 2035 Main Towns

Figure 25 Model Structure for 2035

Source 11 Compile by author.

During this phase of the research, ongoing and proposed projects within the timeframe of
2023 to 2028 are meticulously digitized and integrated into the simulation model. This
encompasses various infrastructure initiatives and urban development projects, ensuring their
spatial representation is accurately captured. Through simulation, the anticipated impacts of
these projects on land use and transportation dynamics are thoroughly assessed. The primary
objective is to generate a predictive map for the year 2028, reflecting the cumulative effects

of these initiatives on the urban landscape.

In the subsequent phase, the simulation progresses to the year 2035, utilizing the initial layer
from 2021 and the final layer derived from the 2028 simulated outcomes. This iterative
approach allows for a comprehensive evaluation of land use changes and transportation

patterns, providing valuable insights into the long-term implications of the proposed projects.

Table 6 Proposed NPP projects for 2035.

Type of Infrrastructure 2035 Projects

Kandy — Kurunegala
Railway Projects Beliatta-Katharagama

Ratnapura — Hambantota

Road Infrastructure Projects | Central Expressway (Kurunegala-Dambulla)
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In this phase of the research, ongoing and
proposed projects from 2023 to 2028 are
being carefully integrated into the
simulation model. These projects include
infrastructure developments like roads and
Their

accurately depicted on the map to assess

railways. spatial locations are
their potential impacts on land use and
transportation in the future. The goal is to
predict how these projects might shape the
urban landscape by 2028. Next, the
simulation progresses to 2035 using data
from 2021 as a starting point and insights
gained from the 2028 simulation. This
iterative approach helps understand the
long-term implications of these proposed
projects.The proposed projects have been
visually represented on a map, and a
reclassified map with digitized proposed

projects has been created.
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Figure 29 Existing and Proposed
Highway Network by NPP 2035

Integrated with the digitized proposed road projects for the year 2035, a reclassified raster has

been generated to represent these road developments. This raster dataset is incorporated into

the Molusce simulation framework, enabling the assessment of potential impacts on land use

patterns and transportation networks.

Table 7 Land Use change 2035.

La?gpgse 2021(sq.km) | 2028(sq.km) | 2035(sq.km) | 2021(%) | 2028(%) | 2035(%)
Water 2179.34 1871.52 2156.68 330 | 283 | 327
Vegetation | 35599.20 | 35139.73 | 3464532 | 5391 | 5319 | 5259
Agriculture | 1209654 | 1212651 | 13277.08 | 1832 | 1836 | 20.15
Urban 985275 | 1052031 | 1078481 | 1492 | 1592 | 16.37
Other 6308.60 640412 | 501257 955 | 969 | 761

Source 13 Compile by author.
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2035 Predicted
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Figure 30 land use map of Sri Lanka Figure 31 land use map of Sri Lanka
2028 2028
Land use Distribution Projection (2021-2035)
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Figure 32 Land use Distribution Projection (2021-2035)
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c) Model Structure for Year 2050

Distance From the
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ITIAL Projects
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Slope
PREDICTD Distance From the
LULC 2050 Main Towns

Figure 33 Model Structure for 2050

Source 14 Compile by author.

During this phase of the research, ongoing and proposed projects from 2023 to 2028 are
being digitized and integrated into the simulation model. This includes various infrastructure
projects. Through simulation, assessing the expected impacts of these projects on land use
and transportation dynamics, with the primary goal of generating a predictive map for the
year 2028 that reflects the cumulative effects of these initiatives on the urban landscape.
Subsequently, the simulation progresses to the year 2035, utilizing the initial layer from 2020
and the final layer derived from the 2028 simulated outcomes. This iterative approach enables
a comprehensive evaluation of land use changes and transportation patterns, providing
valuable insights into the long-term implications of the proposed projects. The digitized
projects for 2035 include railway expansions such as the Habarna-Anuradhapura line, the
Medawachchiya-Trincomalee line, the Hambantota-Wellawaya-Polonnaruwa line, and the
Wellawaya-Monaragala-Potuvil-Batticaloa line, which are projected to be completed by
2050. These projects will be integrated into the simulation model to forecast land use

dynamics and transportation networks up to the year 2050.

Table 8 Proposed NPP projects for 2035.

Type of Infrastructure 2035 Projects

Habarna-Anuradhapura (2050)

Medawachchiya — Trincomalee (2050)

Hambantota — Wellawaya — Polonnaruwa (2050)
Wellawaya — Monaragala — Potuvil — Batticaloa (2050)

Railway Projects

Source 15 Compile by author.
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.In this phase, I've digitized and reclassified several railway
projects planned for completion by 2050. These include the
Habarna-Anuradhapura  line, the = Medawachchiya-
Trincomalee line, the Hambantota-Wellawaya-Polonnaruwa
line, and the Wellawaya-Monaragala-Potuvil-Batticaloa line.
By adding these digitized projects into the QGIS Molusce
plugin, we aim to assess their potential impacts on land use
and transportation dynamics. This integration allows us to
simulate various scenarios and evaluate how these railway
expansions might shape urban development and accessibility
in the future. It's a crucial step in understanding the long-

term implications of these infrastructure projects.
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Figure 34 Existing
Railway Lines and
Proposed Railway Lines
by NPP Sri Lanka (2028,
2035 and 2050)
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Figure 35 land use map of Sri Lanka
2020
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Table 9 Land Use change 2050.

Landuse Type | 2020(sg.km) | 2035(sg.km) | 2050(sg.km) | 2020(%6) | 2035(%0) | 2050(%b)
Water 1886.58 2156.68 1752.117 2.87 3.27 2.66
Vegetation 34108.52 34645.32 31599.8 51.87 52.59 48.06
Agriculture 11267.48 13277.03 1121751 17.13 20.15 17.06
Urban 10157.62 10784.81 11599.18 15.45 16.37 17.64
Other 8339.27 5012.57 9576.911 12.68 7.61 14.57

Source 16 Compile by author.
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Figure 37 Land Use Distribution Projection (2020-2050)
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Figure 40 Land Use 2035(%)

The digitized projects for 2035 include railway expansions such as the Habarna-
Anuradhapura line, the Medawachchiya-Trincomalee line, the Hambantota-Wellawaya-
Polonnaruwa line, and the Wellawaya-Monaragala-Potuvil-Batticaloa line, which are
projected to be completed by 2050. These projects will be integrated into the simulation
model to forecast land use dynamics and transportation networks up to the year 2050. Finally,
the simulation will show the 2050 simulated map, providing insights into the anticipated land
use patterns. (Figure 51).
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e Impact of Proposed Railway Projects.

Figure 41 Impact of Railway Figure 42 Impact of Railway Figure 43 Impact of Railway
Network to the Land Use Network to the Land Use Network to the Land Use
2028 2035 2050

Table 10 Impact of Railway Network to the Land Use 2028, 2035 and 2050

Area Percentage%o
Land Use Type
2028 2035 2050 2028 2035 2050

Water 1002.40 1124.33 964.18 3.16 3.56 3.05
Vegetation 13445.12 | 12800.71 | 12284.53 42.40 40.53 38.90
Agriculture 7227.52 7740.59 6055.46 22.79 24.51 19.18
Urban 7315.03 7478.16 7577.02 23.07 23.68 24.00
Other 2721.87 2437.74 4695.14 8.58 7.72 14.87

Source 17 Compile by author.
Above data presents the land use type distribution for the years 2028, 2035, and 2050, with a

focus on the impact of the railway network on land use dynamics. Let's analyze the changes

observed over these time periods:

The area occupied by water bodies experiences slight fluctuations over time, with a decrease

from 2028 to 2050. This suggests minimal impact from the railway network on water bodies.

The area covered by vegetation shows a declining trend from 2028 to 2050. This could
indicate land conversion for urban or agricultural purposes, possibly influenced by the

proximity to railway stations and associated development.
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Agricultural land area decreases gradually over the simulation period. This decline might be
attributed to urban expansion and infrastructure development, including the railway network,

which could lead to land conversion for residential or industrial purposes.

Urban areas witness steady growth throughout the simulation period. This expansion could be
linked to increased accessibility facilitated by the railway network, attracting population

influx, and driving urban development.

In this research, predictive simulations were conducted for the years 2028, 2035, and 2050 to
analyze land use changes, utilizing six influential factors identified from the study: Distance
from Water Bodies, Slope, Distance from Highway Interchanges, Distance from Railway
Stations, Population, and Distance from Main Towns. Additionally, proposed infrastructure
projects outlined in the National Physical Plan (NPP) for the years 2023-2048 were
considered, focusing on spatially representable projects such as road and railway
developments. To assess the impact of railway stations on land use, existing and proposed
stations were identified from the NPP, and a buffer zone of 10 kilometers around these
stations was delineated. This buffer zone served as the area of interest for evaluating the

influence of railway stations on land use dynamics.

Impact of Railway Network to the Land Use 2028,
2035 and 2050

45.00
40.00
35.00
30.00
25.00

B o028
20.00
15.00 B o035
10.00 2050
5.00 II
0.00 ..

Water Vegetation Agriculture Urban Other

Percentage (%)

Landuse Type

Figure 44 Impact of Railway Network to the Land Use 2028, 2035 and 2050
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e Impact of Proposed Expressway (Highway Interchanges) Projects.

.........

2050 Highway
andcode
'

2028 Highway 2035 Highway
dcode:

grdcad

1

“la02e] iﬁ .
Figure 45 Impact of Figure 46 Impact of Figure 47 Impact of
Expressway (Interchanges) Expressway (Interchanges) — Expressway (Interchanges)
to the Land Use 2028 to the Land Use 2035 to the Land Use 2050

Table 11 Impact of Expressway network to the Land Use 2028, 2035 and 2050

Land Use Type Area Percentage%

2028 2035 2050 2028 2035 2050
Water 309.91 260.10 317.64 2.06 1.73 2.12
Vegetation 7319.68 | 6586.63 | 5997.03 48.66 43.79 39.97
Agriculture 2459.50 | 3010.89 | 2221.00 16.35 20.02 14.80
Urban 4524.98 | 4563.74 | 4977.76 30.08 30.34 33.17
Other 428.14 619.80 1491.21 2.85 4.12 9.94

Source 18 Compile by author.

Similarly, the impact of highway interchanges on land use was examined by identifying
existing and proposed interchanges from the National Physical Plan. A buffer zone with a
radius of 15 kilometers around these interchanges was delineated. This buffer zone served as
the spatial boundary for analyzing the effect of highway interchanges on land use

transformations.

By employing this systematic approach, the research aimed to provide insights into how
proposed infrastructure development, particularly railway stations and highway interchanges,
could shape land use patterns over time. This methodological framework allowed for a
comprehensive analysis of the spatial relationships between infrastructure development and

land use changes. Analyzing the impact of highway interchanges on land use dynamics across
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the simulated years of 2028, 2035, and 2050 reveals notable shifts in land use patterns. Here's

a detailed analysis based on the provided data:

The area of water bodies shows a slight increase from 2028 to 2050, suggesting minimal
impact from highway interchanges. Despite fluctuations, the percentage of area occupied by

water remains relatively stable over the study period.

There is a consistent decline in vegetation areas from 2028 to 2050, indicating a gradual
conversion of vegetated areas to other land use types. The percentage of land covered by
vegetation decreases significantly, indicating substantial changes in ecosystem composition
possibly due to urbanization or agricultural expansion facilitated by highway interchanges.

Agricultural land area experiences fluctuations throughout the study period, with a notable
decrease from 2028 to 2050. The percentage of land allocated for agriculture follows a
similar trend, suggesting a shift away from agricultural activities possibly due to urbanization

or land use conversion for other purposes facilitated by highway interchanges.

Urban areas witness a steady increase in both areas and percentage coverage from 2028 to
2050. This trend reflects the expansion of urban infrastructure facilitated by the presence of

highway interchanges, leading to increased urbanization and development.
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Impact of Expressway network to the Land Use
2028, 2035 and 2050
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Figure 48 Impact of Expressway network to the Land Use 2028, 2035 and 2050
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e Impact for Proposed Urban Settlement Hierarchy

The "Impact of Proposed Urban Settlement
Hierarchy" refers to the assessment and analysis
of the designated areas outlined in the National
Physical Plan 2023-2048, which delineates
zones for urban agglomeration and rural
clusters/agro areas. This zoning map, termed the
Urban Settlement Hierarchy, serves as a strategic
blueprint for guiding development and land use
decisions within the specified timeframe. Based
on the data provided, it is evident that the area
allocated to agriculture (Agro areas) is
decreasing over time due to the implementation
of proposed projects. Here's a breakdown of the
findings. As observed, the area designated for
agriculture decreases from 7883.45 Sg. Km in
2028 to 6942.29 Sq. Km in 2050, representing a

Natonal Physicai Pranning Departmant

Source 19 National Physical Plan
2023-2048
Figure 49 Proposed Urban Settlement
Hierarchy

decline in percentage from 27.34% to 24.21%. This reduction suggests a gradual conversion

of agricultural land to other land uses, likely driven by urbanization and infrastructure

development projects outlined in the National Physical Plan. Consequently, the diminishing

area allocated to agriculture may have implications for food security, rural livelihoods, and

environmental sustainability, necessitating careful consideration and strategic planning to

mitigate adverse impacts.

Table 12 Impact of Proposed Urban Settlement Hierarchy

Area (Sq. Km) Percentage%o
Land Use Type
2028 2035 2050 2028 2035 2050
\Water 711.819 802.879 632.542 | 2.468877 | 2.79726 2.20604
\/egetation 11007.1 10459.1 9964.75 | 38.17709 | 36.43989 | 34.75286
Agriculture 7883.45 8375.06 6942.29 | 27.34301 | 29.17901 | 24.21179
Urban 6552.58 6604.02 6626.81 | 22.72701 | 23.00865 | 23.11153
Other 2676.74 2461.28 4506.79 | 9.284021 | 8.57519 | 15.71779

Source 20 Compile by author.
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The table

diminishing agricultural and vegetation areas over

indicates a concerning trend of

-
time in Sri Lanka. Specifically, the data shows a ! .
reduction in agricultural land from 11718.76
sg.km in 2028 to 10347.55 sq.km in 2050,
representing a decrease in the percentage of
agricultural land from 24.23% to 21.56% over the
same period. Similarly, there is a decline in
vegetation area from 20379.89 sg.km in 2028 to
18585.28 sg.km in 2050, with the percentage of
vegetation decreasing from 42.14% to 38.72%
A

0 20 40 80

over the respective years. This notable loss of

Kilometers

agricultural and vegetation lands signifies a

Source: Land Use Policy Planning Department - 2018

Source 21 National Physical Plan 2023-
2048 Agro Conservation area.

Figure 53 Agro conservation Area NPP
2023-2048

significant threat to agro conservation zones and

underscores  the urgency of balancing
development initiatives with the preservation of
vital agricultural resources for sustainable land

use practices and food security.

Table 13 Impact for Agro Conservation zone

Land Use Area(Sg.Km Percentage%
Type
2028 2035 2050 2028 2035 2050

Water 1304.62 | 1514.09 | 1107.77 2.70 3.14 2.31
Vegetation 20379.89 | 19687.65 | 1858528 | 42.14| 4085| 3872
Agriculture 11718.76 | 12642.43 | 1034755| 2423| 26.23|  21.56
Urban 9961.75 | 10151.46 | 10313.88 20.60 21.06 21.49
Other 499490 | 4199.08 | 7648.25 10.33 8.71 15.93

Source 22 Compile by author.
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Conclusion

In conclusion, this research demonstrates the profound impact of infrastructure projects
outlined in Sri Lanka's National Physical Plan (NPP) on land use dynamics from 2023 to
2050. Using the QGIS MOLUSCE Plugin for predictive simulations, the study reveals
significant shifts in land use patterns, such as a decline in agricultural and vegetative areas
alongside urban expansion, driven by the proposed railway, expressway, and urban settlement
developments. The findings highlight the complex interplay between infrastructure
development, urbanization, and land conservation, emphasizing the need for integrated and
sustainable planning approaches. To further enhance understanding, it is suggested to expand
the analysis by simulating land use changes based solely on influencing factors, offering
clearer insights into the distinct impact of infrastructure projects on future land development.
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Figure 64 Terrset land cover prediction for 2021. compile by author.
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