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Abstract: The application of remote sensing technology for the extraction of inland water bodies has 

proven to be an effective method for large-scale water body investigations. Synthetic Aperture Radar 

(SAR) images offer the advantage of all-weather observation, unlike multispectral remote sensing 

images, which suffer from data quality degradation due to cloud cover. However, the efficient and 

accurate extraction of water bodies from SAR images, which is characterized by limited spectral 

information, remains a significant challenge. This article proposes an image segmentation algorithm 

based on a multimodal deep neural network model for extracting inland water bodies from SAR 

images. Initially, the method achieves feature alignment of SAR images and text based on the 

Transformer-based multimodal network. Subsequently, the image features of SAR images are encoded 

through a linear classifier applied to the scene classification task. Finally, an image decoder, a 

designed Convolutional Neural Network (CNN) structure, generates the results for the inland water 

body segmentation task. Experimental results using Sentinel-1 satellite data demonstrate that the 

multimodal feature encoder can effectively align SAR images with text. More than 90% precision and 

recall for the defined scene classification task can be achieved by the SAR image-text model. The 

proposed segmentation algorithm has also been validated for the extraction of inland water bodies. 
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Introduction 

Water body extraction is a crucial aspect of remote sensing applications, particularly in 

fields such as flood disaster monitoring, wetland conservation, and water resource 

management. While traditional optical remote sensing imagery can provide clear water 

body information under favorable weather conditions, its effectiveness significantly  

reduced in cloudy or rainy environments. In contrast, Synthetic Aperture Radar (SAR), as 

an active remote sensing technology (Franceschetti & Lanari, 2018), utilizes radar signals 

in the microwave spectrum to observe the Earth's surface. Unlike optical remote sensing, 

SAR provides reliable observational capabilities in all weather conditions and at any time 

of day, as active microwaves can penetrate clouds and fogs, rendering it impervious to 

variations in weather and lighting conditions. It makes SAR particularly valuable in 

extreme weather scenarios (Chen, Lv, Li, Qang, & Wang, 2020). SAR's pronounced 

reflective properties over water bodies enable it to effectively delineate the boundary 

between water and land, and it performs exceptionally well in complex environments. 

Consequently, SAR images are widely employed in tasks such as flood disaster 
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monitoring (Iervolino, Guida, Iodice, et al., 2014), wetland management (Baghdadi, 

Bernier, Gauthier, et al., 2001), river extraction (Gasnier, Denis, Fjørtoft, Liège, & Tupin, 

2021), and coastline extraction (Ding, Nunziata, Li, & Migliaccio, 2015). Nevertheless, 

the use of SAR imagery for water body extraction presents several challenges. Notably, 

speckle noise within the imagery can obscure water boundaries, reducing extraction 

accuracy. Furthermore, the variability in scattering characteristics among different surface 

types might lead to misclassification issues. To address these challenges, advanced 

algorithmic techniques, including machine learning and deep learning, have been 

increasingly applied to enhance water body extraction methods based on SAR imagery. 

This paper presents a novel method that integrates Transformer-based multimodal model 

and Convolutional Neural Network (CNN) architectures to  extract water body from SAR 

image segmentation tasks. Initially, the method aligns features from SAR images with 

those in descriptive text using a Transformer-based multimodal network designed for text-

image integration. Subsequently, a linear classifier is employed to train the image features 

derived from SAR images for scene classification. Finally, the method utilizes a CNN-

based image decoder to produce segmentation results for inland water bodies. This 

approach aims to leverage the strengths of both Transformer and CNN frameworks to 

explore the potential of multimodal models in water body extraction on SAR imagery. 

 

Literature Review 

Water body extraction methods from SAR imagery have progressed from traditional 

techniques—including threshold-based segmentation, edge detection, and statistical and 

mathematical models—to more advanced machine learning algorithms. Threshold-based 

methods for water body extraction (An, Niu, Li, et al., 2010) rely on setting one or more 

thresholds to differentiate water from non-water regions. Commonly used thresholding 

techniques include the Otsu method, maximum entropy method, and backscatter 

thresholding. Additionally, edge detection algorithms such as the Canny and Sobel 

algorithms can exploit reflectance differences between water and land in SAR images to 

delineate water-land boundaries, thereby facilitating water body extraction (Marghany & 

Hobma, 2000). Statistical and mathematical models, such as the Gaussian Mixture Model 

(GMM), have also proven effective in this context (Hou, Tang, Jiao, et al., 2009). 

Moreover, traditional machine learning approaches, such as Support Vector Machines 

(SVM), have been applied to SAR-based water body extraction research (Lv, Yu, & Yu, 

2010). However, both traditional and machine learning methods have limitations in 
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robustness. Specifically, SAR images often contain significant coherent speckle noise, 

making it challenging to develop mapping models that adapt effectively to all pixels. This 

issue constrains the accuracy and reliability of water body extraction outcomes. 

In the context of SAR image water body extraction, deep learning methods use multi-layer 

encoding to extract intricate features from images. These methods learn shared weights 

within the model to develop mapping functions that accommodate all pixels, thereby 

mitigating noise interference and enhancing algorithmic robustness. Convolutional Neural 

Networks (CNNs) have already been employed in SAR-based water body extraction tasks 

(Wang, Wang, Wang, et al., 2022), with advancements based on architectures like U-Net 

that address the specific characteristics of SAR images (Bai, Wu, Yang, et al., 2021). Such 

advancements include the integration of residual networks, spatial pyramid pooling, 

additional skip connections, and the development of more sophisticated loss functions. 

Furthermore, research has also investigated SAR image water body extraction algorithms 

utilizing Transformer encoder modules (Zhou, Yang, Ma, et al., 2022). Evidence suggests 

that the adaptive mapping relationships established by neural network architectures—

independent of specific algorithms or assumptions—can surpass the performance of 

traditional methods in SAR image water body extraction (Guo, Wu, Huang, et al., 2022). 

Deep learning methods have demonstrated significant promise for water body extraction 

in SAR imagery; however, several challenges persist. A major issue is that the current 

volume of SAR image data is inadequate to meet the extensive sample requirements 

necessary for training neural networks, particularly given the limited availability of 

publicly accessible datasets related to water body extraction (Bonafilia, Tellman, 

Anderson, et al., 2020). Consequently, developing more efficient feature extraction 

models and exploring techniques for multi-source data fusion to mitigate computational 

resource demands and data constraints represent crucial research avenues. Currently, most 

approaches predominantly focus on utilizing image information, such as the fusion of 

SAR and optical imagery (Zhang, Lin, Wang, et al., 2018), for water body extraction. 

Nevertheless, within the framework of deep neural networks, models incorporating 

multimodal data (Radford, Kim, Hallacy, et al., 2021) have already achieved promising 

results in classification tasks. Investigating whether the integration of SAR images with 

other multimodal data can enhance water body extraction performance remains a valuable 

area for further research. 
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Methodology 

The subsequent sections will describe the proposed model in terms of two components: 

the Transformer-based multimodal encoder and the CNN-based decoder. 

 

 

Figure 1: The proposed model structure for water body extraction from SAR images. 

 

a. Transformer-based multimodal encoder:  

The proposed methodology based on image-text multimodal models establishes a 

framework (Li, Selvaraju, Gotmare, et al., 2021) for processing SAR data. This 

framework utilizes prompt text to indicate the presence of water bodies and land within 

SAR images. SAR images are categorized into distinct classes, each representing 

consistent information about water bodies and land, such that all textual descriptions 

associated with data in a given scene category remain uniform. For instance, SAR images 

containing both water bodies and land boundaries are described by the prompt text: "The 

image contains a boundary line between water bodies and land." In accordance with the 

Bidirectional Encoder Representations from Transformers text encoding method (BERT) 

(Devlin, 2018), textual data is digitized through tokenization, which converts written 

words into tokenized representations, which are then mapped into vector space. The text 

feature encoder comprises 12 layers of Transformer blocks. Similarly, SAR images are 

divided into patches using the Vision Transformer (Dosovitskiy, 2020) and mapped into 

vector space, with feature extraction performed by an image encoder that also consists of 

12 Transformer layers. 

The model leverages pre-trained parameters from BERT without further training. Instead, 

the focus is on the training of the image encoder. An adapter situated after the encoder is 

incorporated, including feature fine-tuning layers for both modalities and a classifier for 

scene classification tasks. During multimodal model training, image features are aligned 
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with text encoding features through the fine-tuning layers. The loss function of the model 

is comprised of two components: the alignment loss between text and images and the 

classification loss associated with image classification. The classification task is defined 

based on the presence or absence of water bodies in the image. The image encoding 

features, optimized for this classification task, will improve the pre-trained parameters for 

SAR image water body extraction. 

 

b. CNN-based decoder: 

In the decoder section, the paper utilizes a convolution-based modular architecture. This 

structure incorporates modules consisting of two units based on the Convolutional Block 

Attention Module (CBAM) (Woo, Park, Lee, et al., 2018), with residual connections 

employed to concatenate these modules. CBAM, a lightweight attention mechanism, 

enhances the representational capacity of convolutional neural networks by integrating 

attention mechanisms across both spatial and channel dimensions. By separately 

processing and integrating input feature maps along these dimensions, CBAM facilitates a 

more comprehensive representation and decoding of SAR image features. 

Residual connections (He, Zhang, Ren, et al., 2016) introduce skip connections that 

ensure effective gradient propagation from deeper to shallower layers within the deep 

network, thus mitigating the vanishing gradient problem. In the convolutional decoder, the 

incorporation of residual connections facilitates skip connections for the CBAM 

combination modules, preserving the feature representations of the shallower decoder 

layers and augmenting the network's capacity to represent features. This enhancement 

enables the model to capture complex patterns more effectively. Furthermore, the 

network's ability to approximate identity mappings is improved, which accelerates the 

convergence rate during training. 

The process of reconstructing water body extraction results from encoded features to 

image dimensions predominantly relies on deconvolution operations for upsampling. 

During deconvolution, the network learns specific weights to refine the details of the 

output feature maps, progressively restoring high-level encoded features to their original 

image resolution. Consequently, the model adeptly converts abstract, low-resolution 

encoded features into high-resolution images, thereby achieving accurate reconstruction of 

SAR image water body extraction results. 
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Results and Discussion 

The algorithm was evaluated using an experimental dataset derived from Sentinel-1 

single-band SAR images including both water bodies and land. This dataset comprises 

6,641 images, with water body reference samples that were manually annotated. The 

dataset was split into training and test sets with a ratio of 7:3. The experiments and 

subsequent analyses were conducted in accordance with the image encoding structure 

detailed below. 

 

a. Multimodal coding features: 

The optimization of visual encoder parameters is is achieved by solving the defined 

classification problem. Specifically, the training process utilizes labeled SAR image data, 

with model parameters being iteratively updated to minimize both classification loss and 

alignment loss. Employing the backpropagation algorithm, the visual encoder igradually 

adjusts its internal weights to improve its ability to extract features that differentiate 

between water bodies and land in SAR images. 

 

Figure 2: Visualization of the attention of multimodal model for SAR images. 

To assess the effectiveness of the multimodal model in extracting features from SAR 

image data, heat maps were employed as a visualization tool. Heat maps, as a data 

visualization technique, offer an intuitive representation of the model's focus areas and 

feature intensity distribution across various spatial locations. This approach facilitates an 

analysis of the model's feature extraction performance by illustrating the regions to which 

the multimodal model pays the most attention during SAR image processing. By mapping 

high-dimensional feature data onto a two-dimensional space, heat maps visually depict the 
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model's response intensity at different locations within the input image. These intensities 

reveal the spatial distribution of features learned by the model, highlighting which regions 

the Transformer-based model assigns higher weights during specific tasks. 

The results indicate that, following training with the multimodal network model, the 

visual encoder for SAR images demonstrated satisfactory feature extraction performance. 

Compared to those in the original images, the areas of focus within the SAR images 

revealed significant distinctions between water and land, with clear delineation of water 

bodies and land boundaries. The model generally exhibited a greater focus on water 

bodies, although in certain instances (e.g., the first image), the model's attention was 

directed towards land. This varied attention distribution underscores the Transformer-

based multimodal model’s capacity to differentiate between water and land in SAR 

images. 

Table 1 presents metrics for training and validation accuracy, including recall and 

precision, for the three defined classification categories. The data show that the model 

performs robustly across all categories. It achieves the highest recall and precision in the 

category labeled "No land in the image." The performance for the categories "No water in 

the image" and "Water and land are in the image" is similar. Overall, with a classification 

accuracy nearing 90%, the multimodal model exhibits a low false positive rate. 

 Table 1: Validation accuracies of the multimodal encoder for classification. 

 

b. Feature decoding results: 

The Mean Intersection over Union (MIOU) metric was employed to evaluate the performance 

of the segmentation decoder for land and water bodies. After 1,000 training iterations, the 

highest training segmentation accuracy achieved was 0.9697, while the highest testing 

accuracy was 0.8485, which demonstrates the decoder's effective performance in 

distinguishing water and land boundaries. The Figure 3 illustrates the segmentation results as 

the model's loss converges during decoder training. Throughout the iterative training process, 

the decoder's performance showed progressive improvement, enhancing its ability to 

accurately capture the subtle features of water and land boundaries. Continuous optimization 

 No water in the 

image 

No land in the 

image 

Water and land are in 

the image 

Recall 0.8790 0.9187 0.8870 

Precision 0.8955 0.9536 0.8955 
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of network parameters enabled the decoder to refine its segmentation capabilities for various 

regions within the image. 

Initially, the decoder's segmentation results exhibited considerable boundary blurring and 

smoothness, attributable to the network's insufficient learning of the specific features of water 

bodies and land. However, as training advanced, particularly after 100 epochs, the encoder 

adjusted its internal parameters through extensive data input and backpropagation. This 

adjustment led to a gradual reduction in discrepancies between predicted results and reference 

samples. The convergence observed during training is reflected in the increasingly precise 

and refined segmentation boundaries. As training progressed, the model's segmentation 

results became more stable, with a marked reduction in boundary prediction errors, indicating 

the decoder's improved ability to capture the nuanced differences between water bodies and 

land. 

 

Figure 3: Visualization of the convergence of segmentation predictions during iterations. 

 

Conclusion and Recommendation  

In summary, we designed and trained a multimodal encoder for pre-training and a decoder 

for generating segmentation results to address the challenge of water extraction in SAR 

images. During the pre-training phase, we employed a Transformer-based multimodal 

encoder that integrates multimodal data, allowing the model to leverage complementary 

information from different data sources. This integration enhances the model's capacity to 

distinguish between water bodies and land from SAR images. The multimodal encoder 

effectively extracts features from SAR images by minimizing classification and alignment 

losses during training. 
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For the segmentation task, we developed a convolutional neural network-based decoder 

proficient in handling the spatial detail features of SAR images. Through convolutional 

operations, the decoder progressively reconstructs high-dimensional features extracted by 

the multimodal encoder, producing high-precision segmentation maps of water bodies and 

land. The joint training of the multimodal encoder and decoder ensures a cohesive synergy 

in both feature extraction and segmentation result generation. 

Future research may focus on incorporating more sophisticated model architectures or 

utilizing richer training datasets to further enhance the model's segmentation accuracy and 

robustness. Specifically, optimizing the model's generalization capability for complex 

scenes and diverse data sets presents a significant and promising area for further 

investigation. 
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