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Abstract Urban area extraction and classification are essential for effective urban planning, 

environmental monitoring, and disaster management. Traditional optical sensors, which depend on 

sunlight for imaging, often encounter limitations due to adverse atmospheric conditions such as cloud 

cover and varying light levels. These limitations can lead to incomplete or inaccurate data, 

particularly in regions that frequently experience weather disturbances. In contrast, Synthetic 

Aperture Radar (SAR) sensors provide consistent and reliable imaging capabilities, regardless of 

weather conditions or time of day, making them invaluable tools for urban studies, especially in 

challenging environments. This study leverages the capabilities of Polarimetric SAR (PolSAR) data, 

which uses multiple polarizations to enhance urban feature extraction through advanced scattering 

decomposition techniques. We propose a novel approach for urban extraction using PolSAR data, 

with a focus on promoting sustainable urban development through the optimized use of energy and 

resources. The methodology involves collecting microwave scattering data from concrete blocks at 

various angles within an anechoic chamber, which is then used to train machine learning models. 

These models are subsequently applied to real-world satellite data from ALOS-2/PALSAR-2, ensuring 

the practical applicability of the approach. The study employs Yamaguchi's decomposition model, 

utilizing the four-component scattering power decomposition method to accurately categorize urban 

features. Initial results demonstrate that incorporating scattering decomposition improves urban 

classification accuracy compared to using only raw channel data. Furthermore, the inclusion of the 

Polarimetric Orientation Angle (POA) enhances classification accuracy by adjusting for angular 

effects influenced by the radar's look angle and the orientation of structures. Validation against 

comprehensive real-world reference datasets confirms the robustness and wide-ranging applicability 

of the developed model. The results suggest that our method could be a valuable tool for urban 

planners and policymakers, providing them with accurate, up-to-date information on urban areas. 

This approach not only supports more informed decision-making but also contributes to more 

sustainable and efficient urban planning practices. 

Keywords: urban area extraction, polarimetric SAR, scattering decomposition, machine 

learning, polarimetric orientation angle  
 

Introduction 

The rapid urbanization occurring globally, especially in densely populated regions like 

Asia, poses significant challenges such as inadequate infrastructure, environmental 

degradation, and heightened vulnerability to natural disasters. As cities expand, there is an 

increasing need for effective urban mapping to support sustainable urban planning, 

environmental management, and disaster preparedness (Kajimoto & Susaki, 2013). 
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Traditional methods of urban mapping, which often rely on Geographic Information 

Systems (GIS) data, can be labor-intensive and slow to update, particularly in fast-

growing urban areas (Li et al., 2014). 

In light of these challenges, Synthetic Aperture Radar (SAR) has emerged as a powerful 

tool for urban analysis, providing detailed spatial information regardless of weather 

conditions or time of day (Yamaguchi et al., 2005). SAR’s ability to penetrate cloud cover 

and deliver consistent imaging makes it particularly suitable for urban monitoring 

(Schneider et al., 2010). Polarimetric SAR (PolSAR) further enhances this capability by 

employing multiple polarization channels, which allow for a more nuanced interpretation 

of the scattering properties of urban surfaces (Niu & Ban, 2013). 

Recent research has demonstrated the potential of PolSAR in urban area extraction and 

classification. By leveraging the unique scattering characteristics of man-made structures, 

these techniques enable more precise mapping of urban environments (Freeman & Durden, 

1998). However, the complexity of backscattering mechanisms in urban areas presents 

ongoing challenges. Traditional approaches, often reliant on single-band or mono-

polarized SAR imagery, have shown limitations in accurately distinguishing between 

various urban features (Shabou et al., 2012). 

This study introduces a novel methodology for urban extraction that integrates PolSAR 

data with advanced scattering decomposition techniques. Specifically, we utilize the four-

component scattering power decomposition method based on Yamaguchi’s model to 

enhance the accuracy of urban feature classification (Yamaguchi et al., 2006). 

Additionally, we incorporate the Polarimetric Orientation Angle (POA) as a critical 

feature in our model. The POA, which reflects the orientation of structures relative to the 

radar sensor, is known to significantly influence backscattering intensity (Kimura, 2008). 

Correcting for POA effects can mitigate angular dependency in scattering intensity, 

thereby yielding more robust urban mapping results (Kajimoto & Susaki, 2013). 

To further improve our urban extraction capabilities, we employed random forest 

classification to analyze microwave scattering data collected from concrete blocks at 

various angles in an anechoic chamber. This experimental dataset, provided by Niigata 

University, includes measurements of HV, VH, VV, and HH polarizations and serves as a 

foundation for training machine learning models. These models were then validated 

against real-world satellite data from ALOS-2/PALSAR-2. The integration of POA 

correction is expected to enhance the model's performance, leading to more accurate and 

reliable urban extraction outcomes (Ferretti et al., 2011). This research contributes to the 
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advancement of remote sensing techniques for urban analysis, with potential applications 

in urban planning, resource management, and disaster risk reduction (Chaussard et al., 

2014). 

The remainder of this paper is organized as follows: Section 2 describes the indices 

employed in the proposed methodology, including the scattering matrix (S-matrix), 

coherency matrix (T-matrix), four-component decomposition, Polarimetric Orientation 

Angle (POA) estimation, K-means clustering, and Random Forest classification. Section 3 

details the methodology, covering the datasets used (experimental PolSAR data and 

ALOS-2/PALSAR-2), and the methods applied (training dataset preparation, classification 

using raw channels, classification using scattering decomposition, classification using 

scattering decomposition combined with POA, hyperparameter tuning, and validation 

method). Section 4 presents and discusses the classification results, including those from 

classification using raw channels, scattering decomposition, and the combined approach 

with POA, along with an analysis of omission and commission errors. Finally, Section 5 

provides conclusions and recommendations for future research. 

 

Indices Used 

In this section, we discuss the various indices used in the study for urban extraction and 

classification using Polarimetric SAR (PolSAR) data. These indices include the scattering 

matrix (S-matrix), the coherency matrix (T-matrix), the four-component decomposition, 

the Polarimetric Orientation Angle (POA) estimation, the K-means clustering, and the 

Random Forest classification algorithm. Each index plays a crucial role in enhancing the 

accuracy of urban feature extraction and classification.  

a.  Scattering Matrix (S-matrix):  

The scattering matrix is fundamental in describing the scattering behavior of a target in 

PolSAR. It captures the complex amplitudes of the scattered field in different polarizations. 

For a monostatic radar system, the scattering matrix 𝑆 is expressed as: 

                                                         𝑆 =  (
𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

)                                                      (1) 

Where 𝑆𝐻𝐻  and 𝑆𝑉𝑉  represent the co-polarized backscatter for horizontal and vertical 

polarizations, respectively, while 𝑆𝐻𝑉  and 𝑆𝑉𝐻  represent the cross-polarized backscatter, 

for simplicity, 𝑆𝐻𝑉 and 𝑆𝑉𝐻 are assumed to be equivalent. The scattering matrix forms the 

basis for further decomposition and classification methods. 

b. Coherency Matrix (T-matrix): 
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The coherency matrix 𝑇 is derived from the scattering matrix and represents the second-

order statistics of the scattering mechanism. It is beneficial for characterizing the 

scattering properties in terms of power and correlation. The coherency matrix is given by: 

𝑇 = (
𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

) 

           = 

(
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            (2) 

This matrix provides a comprehensive description of the scattering process by considering 

the coherency and phase differences between polarizations. The elements of the matrix 

correspond to different scattering mechanisms: 𝑇11 for surface scattering, 𝑇22 for double-

bounce scattering, and 𝑇33 for volume scattering (Yamaguchi et al., 2020). Other elements 

contribute to less physically defined scattering processes, such as 𝑇12, 𝑇13, and 𝑇23. 

c. Four-Component Decomposition: 

The four-component decomposition technique involves breaking down the observed 

backscattering into four distinct components derived from the coherency matrix 

(Yamaguchi et al., 2006). When this method is applied to the full PolSAR dataset, it yields 

the surface scattering power (Ps), double-bounce scattering power (Pd), volume scattering 

power (Pv), and helix scattering power (Ph). It’s important to note that these components 

are also influenced by the Polarimetric Orientation Angle (POA). 

To address this, Yamaguchi et al. (2006) introduced an approach that rotates the coherency 

matrix based on the POA, which helps mitigate the dependence of these components on 

the relative azimuth. The rotation applied to the coherency matrix can be expressed as: 

                     𝑇(𝜃) = (

𝑇11(𝜃) 𝑇12(𝜃) 𝑇13(𝜃)

𝑇21(𝜃) 𝑇22(𝜃) 𝑇23(𝜃)

𝑇31(𝜃) 𝑇32(𝜃) 𝑇33(𝜃)
) =  [𝑅𝑝(𝜃)] 

† ∙ 𝑇 ∙  𝑅𝑝(𝜃)                   (3) 

Where 𝑃surface, 𝑃double−bounce, 𝑃volume,  and  𝑃helix   represent the power contributions of 

surface, double-bounce, volume, and helix scattering mechanisms, respectively 

(Yamaguchi et al., 2006). In this equation, †  signifies complex conjugation and 

transposition, while 𝑅𝑝(𝜃) represents the rotation matrix defined as: 

                                          𝑅𝑝(𝜃) =  (
1 0 0
0 𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃
0 −𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃

)                                            (4) 

d. Polarimetric Orientation Angle (POA) Estimation: 
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The Polarimetric Orientation Angle (POA) is crucial for accurately representing the 

orientation angle of target structures relative to the radar's line of sight. POA can be 

estimated using the following equation: 

                                   𝜃 =
1

4
tan−1 (

2𝑅𝑒(〈𝑇23〉)

〈𝑇22〉−〈𝑇33〉
) , (−

𝜋

4
≤ 𝜃 ≤

𝜋

4
)                                        (5) 

Where 𝑅𝑒 denotes the real part of the complex number, and 𝑇22,𝑇23, and 𝑇33 are elements 

of the coherency matrix. Incorporating POA into the classification model is essential for 

improving the accuracy of urban feature extraction, as it corrects angular effects caused by 

the orientation of structures (Kajimoto & Susaki, 2013). 

The POA can be conceptualized as the angle of rotation around the radar's line of sight. 

The transformation of a scattering matrix rotated by an orientation angle ξ is represented 

as: 

                          𝑆(ξ) =  (
𝑐𝑜𝑠ξ 𝑠𝑖𝑛ξ
−𝑠𝑖𝑛ξ 𝑐𝑜𝑠ξ

) (
𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

) (
𝑐𝑜𝑠ξ −𝑠𝑖𝑛ξ
𝑠𝑖𝑛ξ 𝑐𝑜𝑠ξ

)                             (6) 

In reflection-symmetric media like horizontal surfaces, the POA is typically zero (Lee et 

al., 2000). However, in steep terrains or urban environments, the POA often deviates from 

zero due to surfaces with non-zero azimuth slopes and man-made structures that are not 

aligned with the radar’s flight direction, such as buildings and bridges with inclined 

features (Lee et al., 2002). Understanding and incorporating these shifts in POA is crucial 

for accurate terrain modeling and urban classification, leading to more reliable results 

(Ainsworth et al., 2008). 

e. K-means Clustering  

The K-means clustering algorithm can be defined mathematically as follows: 

                                                  𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2𝑛

𝑗=1
𝑘
𝑖=1                                                  (7) 

Where: 

𝑛: total number of data points in the dataset. 

𝐽: objective function to minimize. 

𝑘: number of clusters. 

𝑥𝑗: data point. 

𝜇𝑖: centroid of cluster 𝑖. 

K-means clustering was selected for its simplicity, efficiency, and ability to dynamically 

classify urban and non-urban areas for experimental datasets without the need for manual 

labeling. 

f. Random Forest Classification: 
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The Random Forest algorithm is used as a machine learning classifier to categorize urban 

features based on the indices discussed. It is an ensemble learning method that constructs 

multiple decision trees during training and outputs the class that is the mode of the classes 

(for classification) or the mean prediction (for regression) of the individual trees. This 

algorithm is particularly effective in handling high-dimensional data and capturing 

complex interactions between features (Breiman, 2001). 

 

Methodology 

This study focuses on urban extraction and classification using Polarimetric Synthetic 

Aperture Radar (PolSAR) data, divided into three key stages: classification using raw 

channels, classification using full polarizations (HV, VH, VV, and HH), and classification 

using scattering decomposition combined with Polarimetric Orientation Angle (POA). 

The methodology is structured into two primary subsections: data and method. This 

section provides detailed information on the datasets used, the preprocessing steps taken, 

and the methods applied in this study. 

a. Data 

a.1. Experimental PolSAR Data 

The experimental dataset consists of backscattering measurements at various orientation 

angles and distances recorded in an X-band frequency. The data was collected using a 

fully polarimetric SAR system in an anechoic chamber at Niigata University. The key 

polarizations considered are HH, HV, VH, and VV, which are essential for urban 

extraction and classification tasks. This experimental data helps enhance the accuracy of 

the model by providing precise scattering characteristics, particularly for urban areas. The 

simulation involved measurements on concrete blocks, with sizes determined using the 

law of similarity, ensuring that the experiment realistically represents real-world 

conditions. 

 

Figure 1: Setting up the microwave scattering measurement experiment dataset in an 

anechoic chamber at Niigata University. 
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a.2. ALOS-2/PALSAR-2 

The ALOS-2/PALSAR-2 dataset, operated by JAXA and utilizing an L-band frequency 

(1.27 GHz), was employed for large-scale urban mapping in the Tokyo area. This study 

utilized data acquired on May 7, 2024, with an ascending orbit (scene ID: ALOS-

2_PALSAR-2_ALOS2537680710-240507) and an off-nadir angle of 25.0 degrees. The 

dataset features a high spatial resolution of 6 meters and captures crucial polarimetric 

information, including both amplitude and phase data. This polarimetric data is vital for 

distinguishing between urban and non-urban areas, as it provides detailed insights into 

surface characteristics such as roughness and dielectric properties. The ability of ALOS-

2/PALSAR-2 to operate in various polarimetric modes (e.g., HH, HV, VV) enhances its 

sensitivity to different surface types, making it particularly effective for urban 

classification tasks. The data's high resolution and polarimetric capabilities make it a 

powerful tool for urban feature extraction and analysis. 

b. Method 

b.1. Training Dataset Preparation 

The training dataset for this study is derived from experimental PolSAR data 

measurements conducted at Niigata University, which includes microwave scattering data 

collected from concrete blocks at various azimuth angles. The dataset includes 

approximately over 600,000 pixels for both the non-urban and urban classes, ensuring 

balanced representation and minimizing bias. Data normalization techniques were applied 

to address any imbalanced features. Initially, K-means clustering was employed to 

identify natural groupings within the data, which were then used to label the urban and 

non-urban classes. These labeled data points served as the foundation for subsequent 

model training. Figure 2 shows the scattering X-band experimental data and the clustering 

results, where (a) represents HH, (b) HV, (c) VV, and (d) the classification results. 

 

 

(a) [-72, -30 dB] 

 

(b) [-67, -31 dB] 

max min 
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(c) [-71, -29 dB] 

       

(d)  

Figure 2: Scattering x-band experimental data and clustering results for urban 

classification. (a) HH, (b) HV, (c) VV, and (d) classification (red pixels denote urban 

areas, and blue pixels denote nonurban areas). 

b.2. Classification Using Raw Channels  

The initial step in our methodology involves the direct classification of urban areas using 

raw PolSAR data channels: HV, VH, VV, and HH. These channels, representing the 

horizontal and vertical polarization states, contain vital information about the backscatter 

from various urban features. Each pixel's intensity in these channels reflects the strength 

of the radar signal, which interacts with objects in the scene. A Random Forest classifier 

was trained using these raw data channels to establish a baseline for urban feature 

classification. This approach allows us to evaluate the discriminative power of the raw 

channels in distinguishing between different urban and non-urban classes without 

additional feature extraction. 

b.3. Classification Using Scattering Decomposition  

In the next phase, we apply the four-component scattering decomposition technique, 

based on Yamaguchi's decomposition model, to the PolSAR data. This technique 

decomposes the SAR signal into four scattering mechanisms: surface scattering (Ps), 

double-bounce scattering (Pd), volume scattering (Pv), and helix scattering (Ph). By using 

these decomposed components as features in our Random Forest classifier, we aim to 

improve the classification accuracy by capturing more detailed physical characteristics of 

urban areas, which are often mixed and complex in nature. 

b.4. Classification Using Scattering Decomposition + POA 

The third stage of the methodology introduces an advanced classification technique that 

integrates scattering decomposition with POA as an additional feature. Scattering 

decomposition techniques, such as the Yamaguchi four-component model, decompose the 

PolSAR data into distinct scattering mechanisms: surface scattering (Ps), double-bounce 

scattering (Pd), volume scattering (Pv), and helix scattering (Ph). By incorporating POA 
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into the decomposition process, we aim to correct for orientation-induced distortions, 

which are prevalent in urban areas due to the varied alignment of structures. The classifier, 

now trained with Ps, Pd, Pv, Ph, and POA, is expected to yield more accurate urban 

feature extraction by accounting for both the scattering characteristics and the orientation 

of urban features. Figure 3 presents a flowchart of the proposed study, outlining the 

methodology followed in each stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Flowchart of the proposed study. 

b.5. Hyperparameter Tuning 

The Random Forest (RF) model used in the classification stages underwent 

hyperparameter tuning using a Random Search approach. The primary hyperparameters 

adjusted were mtry, which represents the number of variables randomly sampled as 

candidates at each split, and ntree, the number of trees in the forest. For mtry, a tuning 

range of 2 to 10 was explored, while for ntree, the range was set between 50 and 200. 

While increasing ntree can improve performance, it also raises computation time; in this 

study, mtry was set to 2, and ntree to 100. These parameters were selected based on 

preliminary experiments to optimize the model's performance. 

a. Raw channels 

b. Scattering decomposition  

c. Scattering decomposition combined with POA 
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b.6. Validation Method 

The validation of the classification results was performed by comparing the ALOS-

2/PALSAR-2 derived urban maps with the Sentinel-2 land cover dataset, recognized for 

its 10-meter resolution. To address the resolution discrepancy between the ALOS-

2/PALSAR-2 data (6 meters) and the Sentinel-2 data (10 meters), a nearest neighbor 

resampling technique was applied, ensuring accurate pixel-to-pixel correspondence. The 

Sentinel-2 land cover data, produced annually using a deep learning AI model and a vast 

training dataset, served as a reliable reference for validation (Karra et al., 2021) 

The accuracy assessment was conducted by calculating Overall Accuracy (OA), 

Producer’s Accuracy (PA), and User’s Accuracy (UA) for both urban and non-urban 

classes. The results were further analyzed to identify areas of omission and commission 

errors, with a specific focus on regions where the ALOS-2/PALSAR-2 classification may 

have misinterpreted urban features due to similar scattering characteristics. 

 

Results and Discussion 

This study investigates urban extraction and classification using Polarimetric Synthetic 

Aperture Radar (PolSAR) data, focusing on the performance of various classification 

techniques. We evaluated the results using a comprehensive ground truth dataset from 

Sentinel-2, which provides 10-meter land cover data for 2023 (Karra et al., 2021). The 

classification methods employed include classification results, classification using raw 

channels, classification using scattering decomposition, classification using scattering 

decomposition combined with the Polarimetric Orientation Angle (POA), omission and 

commission error analysis, and a proposed method with comparisons. 

a. Result of Classification 

The classification of urban areas was carried out using three different approaches: 

a) Raw channels: Using the original PolSAR data channels without any 

decomposition. 

b) Scattering decomposition: Utilizing a scattering decomposition method to 

enhance the classification. 

c) Scattering decomposition combined with Polarimetric Orientation Angle (POA): 

Integrating POA with scattering decomposition to further improve classification 

accuracy. 

Each method's performance was assessed using Producer's Accuracy (PA), User's 

Accuracy (UA), and Overall Accuracy (OA), providing comprehensive insights into their 
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effectiveness. A ground truth dataset derived from Sentinel-2 10-meter Land Cover data 

for 2023 was employed for validation (Karra et al., 2021). 

 Table 1: Classification accuracy results for different methods. 

Table 1 summarizes the classification accuracy results for the different methods, 

demonstrating that incorporating scattering decomposition and POA significantly 

enhances the accuracy of urban classification using PolSAR data. The highest accuracy 

was observed with the combined approach, making it the most reliable method for urban 

extraction in this study. Figure 4 displays the results of urban classification for the satellite 

ALOS-2/PALSAR-2 over the Tokyo area, with (a) showing urban estimation using raw 

channels, (b) urban estimation using scattering decomposition, and (c) urban estimation 

using scattering decomposition combined with POA.  

 

(a) 

 

(b) 

 

 

 (c) 

Figure 4: Results of urban classification for Tokyo, (a) urban estimation using raw 

channels, (b) urban estimation using scattering decomposition, (c) urban estimation using 

scattering decomposition + POA. 

b. Classification Using Raw Channels 

The initial classification approach utilized the raw channels of PolSAR data, serving as a 

foundational method for urban classification. The results, summarized in Table 1, indicate 

an overall accuracy of 84.34%. The overall Producer's Accuracy (PA) was recorded at 

Classification Method PA [%] UA [%] Overall 

Accuracy [%] 

a) Raw channels 85.82 80.70 84.34 

b) Scattering decomposition 87.03 81.99 85.57 

c) Scattering decomposition + 

POA 
88.64 84.32 87.89 
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85.82%, while the User's Accuracy (UA) reached 80.70%. This discrepancy between PA 

and UA suggests that while many features classified as urban were correctly identified, 

some misclassification occurred, particularly with non-urban features being mislabeled as 

urban. 

The limitations of using raw channel data stem from its inability to fully capture the 

intricate scattering characteristics that define urban environments. Urban areas are 

complex, featuring a mix of materials and structures that produce diverse scattering 

responses. The raw channel classification, while beneficial as a baseline, may lack the 

sensitivity needed to accurately differentiate these nuances, resulting in potential 

misclassifications that can impact urban planning and analysis. 

c. Classification Using Scattering Decomposition 

To enhance classification performance, the study employed scattering decomposition, 

leveraging the polarimetric characteristics inherent in SAR data. This method yielded an 

overall accuracy of 85.57%, with an overall PA of 87.03% and a UA of 81.99%. The 

improvements observed in both PA and overall accuracy underscore the effectiveness of 

scattering decomposition in urban classification. 

The increased PA indicates a more precise identification of urban features, suggesting that 

this method effectively captures the unique polarimetric signatures associated with 

different urban structures. By analyzing the scattering mechanisms, this approach reduces 

confusion between urban and non-urban areas, allowing for a clearer distinction based on 

the physical properties of the features being classified. The ability to discern between 

various scattering types—including surface, volume, and double-bounce scattering—

enables a more accurate representation of the urban landscape. 

d. Classification Using Scattering Decomposition + POA 

The third classification approach combined scattering decomposition with Polarimetric 

Orientation Angle (POA) estimation, aiming to further refine the classification process. 

This method achieved the highest overall accuracy of 87.89%, with an overall PA of 

88.64% and a UA of 84.32%. The significant increase in PA indicates that this method 

was particularly effective in correctly identifying all classes. 

The inclusion of POA is instrumental in enhancing classification accuracy, as it provides 

critical information regarding the orientation of target structures. Urban environments 

often consist of varied and complex geometries, which can lead to misclassification when 

traditional methods are employed. By incorporating orientation information, the classifier 

is better equipped to distinguish between urban and non-urban features, ultimately leading 
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to more precise classifications. This method not only improves the accuracy of urban 

feature identification but also enhances the overall understanding of urban morphology 

and layout. 

e. Omission and Commission Error Analysis 

The analysis of omission and commission errors provides important insights into the 

classification model’s limitations in accurately identifying urban features. Figure 5 

displays the omission and commission error maps, visually representing the areas where 

misclassifications occurred within the study area. 

 

(a) 

 

(b) 

 

Figure 5: Omission and commission maps, (a) omission map, (b) commission map (red 

pixels denote misclassification areas). 

e.1. Omission Errors 

The omission error map (Figure 5(a)) highlights regions that should be classified as urban 

but are incorrectly predicted as non-urban. These errors are most common in areas with 

flat concrete or asphalt surfaces, such as roads, airports, and parking lots. Despite the 

absence of vertical structures typically associated with urban environments, these areas 

are integral parts of the urban landscape. The model struggles to recognize these features 

as urban, resulting in their misclassification as non-urban. 

For instance, in Figure 6(a-d), which focuses on the Haneda airport area, the omission 

errors are clearly visible. The model has incorrectly classified significant portions of the 

airport boundary (outlined in red) as non-urban due to the flat surfaces and lack of 

prominent vertical structures. This example illustrates a critical limitation in the model's 

ability to accurately classify urban areas, especially in regions like airports that do not 

conform to the typical urban profile. 

e.2. Commission Errors 
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Conversely, the commission error map (Figure 5(b)) shows that many misclassification 

errors result from the misinterpretation of scattering mechanisms. Specifically, areas that 

should have been classified as vegetation or forest (characterized by volume scattering, 

Pv) were incorrectly labeled as urban. This issue arises mainly from the limitations of 

traditional scattering models, which often struggle to interpret the scattering mechanisms 

of oriented man-made structures. These models tend to misclassify the scattering 

signatures of such structures as volume scattering, leading to an overestimation of urban 

areas in the classification output. 

This issue is particularly pronounced in environments where man-made structures have 

varied orientations, causing mixed and noisy scattering mechanisms. The rotation of the 

orientation angle further complicates the interpretation of scattering, leading to the 

erroneous classification of non-urban areas as urban. For instance, in Figure 6(e-h), which 

includes parks such as Yoyogi Park, Meiji Jingu Shrine, and Shinjuku Gyoen National 

Garden, the commission errors are apparent where the model misclassified areas of 

natural vegetation (which should be black) as urban (white). These errors highlight the 

challenges the model faces in accurately distinguishing between urban and non-urban 

features in complex environments. 

e.3. Proposed Method and Comparisons 

Figure 6(a) shows the results from the proposed method, which exhibits only a slight 

improvement over the other two methods but still suffers from considerable 

misclassification errors. When compared with Figure 6(b), which represents classification 

using raw channels, and Figure 6(c), which represents classification using scattering 

decomposition, it becomes clear that while the proposed method reduces the number of 

errors slightly, it still fails to accurately delineate urban boundaries in many areas. Figure 

6(d) offers an optical image from Google Earth for reference, displaying the actual extent 

of the airport boundary. 

Despite the proposed method’s slight improvement, it is clear that substantial 

misclassification remains, particularly in areas where traditional models also struggle. 

These findings suggest that while some progress has been made, there is still a significant 

need for more advanced models capable of better handling the complexities of urban 

environments, including varied orientations of man-made structures and flat, non-

vegetative surfaces. 

Overall, these results highlight the ongoing challenges in urban feature extraction using 

current classification methods. The slight improvement provided by the proposed method 
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suggests that while there has been progress, significant work remains. Developing more 

sophisticated models that can more accurately distinguish between different scattering 

mechanisms, especially in complex urban environments, will be essential. Enhancing the 

classification process to better account for the diversity of urban structures and surfaces 

will be crucial for improving the accuracy of urban area extraction. 

 

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

 

(f)  
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(g) 

 

 

(h) 

Figure 6: Close-up of omission error and commission error, (a) omission error map of 

proposed method, (b) omission error using raw PolSAR channels, (c) omission error using 

scattering decompositions, (d) optical reference from google earth, (e) commission error 

map of proposed method, (f) commission error using raw PolSAR channels, (g) 

commission error using scattering decompositions (white pixels denote urban areas, and 

black pixels denote nonurban areas), (h) optical reference from google earth. 

 

Conclusion and Recommendation 

This study assessed various classification methods for urban extraction using Polarimetric 

Synthetic Aperture Radar (PolSAR) data, comparing raw channels, scattering 

decomposition, and a combination of scattering decomposition with Polarimetric 

Orientation Angle (POA) estimation. The proposed method showed a modest 

improvement in accuracy, but challenges remain, particularly with commission and 

omission errors. 

Classification based on raw channels provided a useful baseline but struggled to capture 

the complexities of urban environments. Scattering decomposition significantly improved 

classification accuracy by leveraging distinct polarimetric signatures. The inclusion of 

POA further enhanced results, but only marginally. 

A key to the proposed method's improved accuracy was the experimental training data, 

which included microwave scattering characteristics from an X-band frequency. However, 

issues persisted, with commission errors often misclassifying parks and forests as urban, 

and omission errors incorrectly identifying flat surfaces like roads as non-urban. 

To improve classification reliability, applying a mode filter (or majority filter) is 
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recommended to reduce noise and ensure a smoother representation of urban features. This 

preprocessing step can enhance data quality and accuracy. 

The findings highlight the value of advanced classification techniques in urban analysis, 

especially for planning and decision-making. Urban planners and researchers should 

prioritize methods incorporating scattering decomposition and POA while addressing the 

limitations related to commission and omission errors. Future research should explore 

multi-frequency analysis and test these methodologies in diverse urban environments to 

enhance their robustness and applicability. 

In conclusion, while the proposed method offers slight improvements, continued 

refinement of classification techniques is necessary for better urban extraction using 

PolSAR data. Addressing these challenges will support more accurate urban mapping, 

contributing to the development of resilient and sustainable cities. 

 

References 

Ainsworth, T. L., Schuler, D. L., & Lee, J.-S. (2008). Polarimetric SAR characterization of 

man-made structures in urban areas using normalized circular-pol correlation coefficients. 

Remote Sensing of Environment, 112(6), 2885–2976. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. 

Chaussard, E., Wdowinski, S., Cabral-Cano, E., & Amelung, F. (2014). Land subsidence 

in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 

140, 94-106. 

Ferretti, A., Prati, C., & Rocca, F. (2000). Non-linear subsidence rate estimation using 

permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience 

and Remote Sensing, 38, 2202-2212. 

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new 

algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on 

Geoscience and Remote Sensing, 49, 3460-3470. 

Freeman, A. & Durden, S. L. (1998) A three-component scattering model for polarimetric 

SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36, 936–973. 

Kajimoto, M., & Susaki, J. (2013). Urban density estimation from polarimetric SAR images 

based on a POA correction method. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 6, 1418-1429. 

Kajimoto, M., Susaki, J., & Kishimoto, M. (2020). Urban density mapping of global 

megacities from polarimetric SAR images. IEEE Geoscience and Remote Sensing Letters. 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 18 of 18 
 

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. 

(2021). Global land use/land cover with Sentinel-2 and deep learning. In 2021 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS). IEEE. 

Kimura, H. (2008) Radar polarization orientation shifts in built-up areas. IEEE Geoscience 

Remote Sensing Letters. 5, 217-221. 

Lee, J.-S., Schuler, D. L., & Ainsworth, T. L. (2000). On the estimation of radar polarization 

orientation shifts induced by terrain slopes. IEEE Transactions on Geoscience and Remote 

Sensing, 40(1), 30–41. 

Li, H., Li, Q., Wu, G., Chen, J., & Liang, S. (2016). The impacts of building orientation on 

polarimetric orientation angle estimation and model-based decomposition for multilook 

polarimetric SAR data in urban areas. IEEE Transactions on Geoscience and Remote Sensing. 

Niu, X., & Ban, Y. (2012) An adaptive contextual SEM algorithm for urban land cover 

mapping using multitemporal high-resolution polarimetric SAR data. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing. 5, 1129-1139. 

Shabou, A., Baselice, F., & Ferraioli, G. (2012) Urban digital elevation model reconstruction 

using very high resolution multichannel InSAR data. IEEE Transactions on Geoscience and 

Remote Sensing, 50, 4748-4758. 

Yamaguchi, Y., Yajima, Y., & Yamada, H. (2006) A four-component decomposition of 

POLSAR images based on the coherency matrix. IEEE Geoscience Remote Sensing Letters, 3, 

292-296. 

Yamaguchi, Y. (2020). Polarimetric SAR imaging: Theory and applications. SAR Remote 

Sensing. 


