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Abstract: Simultaneous localization and mapping (SLAM) can provide point clouds and self-position 

data for 3D mapping, virtual reality, augmented reality, mixed reality, UAV flight control, and 

autonomous vehicle control. In 3D mapping, 3D object recognition based on model fitting and 

machine learning is required for the automation of 3D mapping and modeling using dense point 

clouds generated by SLAM and mobile mapping. The machine learning-based 3D object recognition 

is classified into clustering and segmentation. The segmentation is fundamental processing for 3D 

mapping, scan-to-BIM, and autonomous vehicles using point clouds. The segmentation can be 

classified into image-based and 3D-based approaches. Each approach has strengths and weaknesses, 

thus we focus on the integration of image-based and 3D-based approaches embedded in SLAM and 

mobile mapping. In this research, we propose a methodology to improve the performance of 

streaming point cloud processing based on image-based and 3D-based point cloud segmentation for 

3D mapping of urban river environments. We also developed a methodology of streaming point cloud 

segmentation embedded in GNSS/LiDAR-SLAM and multi-beam scanning. In our experiments, we 

used a water-borne mobile mapping system at an urban river as GNSS and non-GNSS environments. 

We acquired dense streaming point clouds above water surfaces with GNSS/LiDAR-SLAM consisting 

of two LiDARs and precise point positioning based on real-time kinematic positioning with a 

centimeter-level augmentation service using a quasi-zenith satellite system. In parallel, we also 

acquired dense streaming point clouds underwater surfaces with a multi-beam scanning sonar with 

RTK-GNSS positioning. Moreover, we experimented with streaming point cloud segmentation of 

acquired massive point clouds to classify streaming point clouds into bridges, revetments, buildings, 

and underwater surfaces. Through the experiment using the streaming point clouds, we confirmed 

that our methodology can improve the scalability of point cloud processing and achieve high-speed 

processing and precise classification as well as conventional image-based and 3D-based point cloud 

segmentation approaches. 

Keywords: Streaming point cloud, Point cloud segmentation, Simultaneous localization 

and mapping, LiDAR, Multi-beam scanning sonar  
 
 

Introduction 

a. SLAM and point cloud processing:  

Simultaneous localization and mapping (SLAM) is a process that simultaneously 

estimates self-position and point clouds for autonomous mobile robots and other 

applications such as virtual reality, augmented reality, and mixed reality. In the field of 
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surveying and construction, SLAM is a popular methodology to simplify point cloud 

acquisition in real-time processing or post-processing for ICT construction and digital 

twinning of urban areas. SLAM can be classified by input data into visual SLAM (SLAM 

using streaming images), Depth SLAM (SLAM using streaming depth images), and 

LiDAR-SLAM (SLAM using streaming LiDAR point clouds). In the field of surveying 

and construction, LiDAR has advantages, such as a wider 3D measurement range and 

more resistance to illumination changes, thus, it is often used to measure large areas and 

objects under changing weather conditions. Moreover, LiDAR-SLAM is used to improve 

the efficiency of surveying in local areas using UAV-LiDAR, handheld LiDAR, and 

wearable LiDAR. 

When utilizing point clouds acquired by LiDAR-SLAM for topographic mapping, form 

surveying, ground surveying, or indoor space mapping, real-time processing is not 

required in most cases at present. Errors are adjusted by post-processing after the 

measurement, then, point cloud mapping, 3D modeling, and 3D mapping are applied. 

Therefore, the automatic processing of LiDAR-SLAM is used for only point cloud 

acquisition in the current state. However, in the advanced digital twinning of cities and 

construction, point clouds obtained in automated driving and construction may be used as 

high-resolution and high-frequency measurement data of cities. Moreover, there is a 

possibility to discuss a new market of mapping for autonomous robots, such as automated 

driving vehicles, unmanned construction vehicles, unmanned aerial vehicles, and 

autonomous boats. Thus, more massive point clouds will be used for mapping and map 

revision with real-time processing. Although there are various technical issues to be 

addressed such as the development of high-capacity communication infrastructure, the 

most technical issue is that it will be hard to apply a conventional mapping approach using 

point clouds with automated systems that include a lot of visual interpretation work. To 

address this technical issue, we focus on pipeline processing-based mapping and modeling 

from streaming point clouds obtained using LiDAR-SLAM. Moreover, although mesh 

modeling and voxelization are required in conventional 3D mapping and modeling, object 

recognition is also required for the full automation of 3D mapping and modeling. The 

object recognition processing based on machine learning can be classified into clustering 

and segmentation. In clustering, point clouds are grouped by statistical processing. In 

segmentation, point clouds are grouped based on predefined rules and knowledge. When 

the estimation of recognized object attributes is automated, segmentation is applied. 
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Segmentation of point clouds is common processing in 3D mapping, scan-to-BIM, and 

automated driving, where deep learning has been increasingly applied. 

 

b. Point cloud segmentation:  

Conventional studies on point cloud segmentation are categorized into image-based 

segmentation and segmentation in 3D space. There are methodologies for image-based 

segmentation, such as PointSeg (Wang et al., 2018), RangeNet++ (Milioto et al., 2019), 

and SqueezeSegV3 (Xu et al., 2020). PointSeg is a semantic segmentation methodology 

for road object extraction that applies a convolutional neural network (CNN) to LiDAR 

point clouds converted to a panorama image. The PointSeg is based on SqueezeNet 

(Iandola et al., 2017), which achieves the same performance as AlexNet (Krizhevsky et 

al., 2012), a CNN for object recognition from images, with only 2% of the number of 

parameters. 

PointSeg achieves both processing efficiency and prediction performance by a model 

learned with a label mask and projected panorama image of KITTI data (Geiger et al., 

2012) consisting of LiDAR point clouds and stereo images oriented with GPS/IMU 

mounted on a vehicle. The processing also performs real-time semantic segmentation at 

90 fps on a single GPU. RangeNet++ is the methodology using depth images, and 

SqueezeSegV3 is the methodology with the similarities and differences between the 

image features of camera images and point clouds. PointSeg, RangeNet++, and 

SqueezeSegV3 have the same main target, such as automatic driving and autonomous 

robots, and the same approach based on point clouds rendering into range images to 

achieve real-time processing. 

There are several methodologies for point cloud segmenting in 3D space, such as 

Volumetric CNN (Qi et al., 2016a), PointNet (Qi et al., 2016b), and PointNet++ (Qi et al., 

2017). Volumetric CNN performs 3D convolution based on the processing of converting a 

point cloud into voxels and binarizing the data within each voxel. The processing cost is 

high and local features of the point clouds are lost due to voxel data convolution. PointNet 

combines the features of the entire point clouds into local features to avoid the difficulty 

of unordered point clouds. Moreover, PointNet uses T-Net, a neural network that outputs 

an affine matrix when point clouds are input, to keep the invariance of the point cloud to 

rotation and translation by aligning the direction of the input point clouds. However, 

information missing of neighboring point clouds occurs. Therefore, in PointNet++, 

learning local features of point clouds is applied through an iterative processing of 
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inputting point clouds clustered with sampling and grouping to the PointNet for more 

accurate segmentation of point clouds. 

 

c. Objective:  

We focused on preprocessing consisting of simple clustering and segmentation of point 

clouds, which tends to improve the processing cost and prediction accuracy in deep 

learning of point clouds. Moreover, although there are many previous studies on the 

segmentation of streaming point clouds for road spaces, there are no examples of 

applications for streaming point clouds measured from boats on urban rivers, because of 

few training data. Therefore, we aimed to develop a simple segmentation methodology of 

streaming point clouds used for preprocessing such as an automatic labeler for annotation 

to improve the performance of deep learning with streaming point clouds. 

The image-based point cloud segmentation methodology can improve processing cost and 

time. Thus, the image-based point cloud segmentation methodology is suitable for the 

segmentation of large-scale streaming point clouds. However, the number of geographic 

features in a frame depends on the scanning range per frame. Furthermore, it is not easy to 

segment objects that require observation in multiple frames to map a single geographic 

feature. By contrast, the methodology of 3D spatial segmentation of point clouds is 

suitable for extracting many features from multiple frames of streaming point clouds 

covering large objects. However, the processing cost is worse than the image-based point 

cloud segmentation methodology. Therefore, we focus on these advantages and 

disadvantages, and we propose a methodology of streaming point cloud segmentation that 

combines a high-speed processing function of the image-based point cloud segmentation 

and the function of feature extraction from point clouds in the methodology of 3D spatial 

segmentation of point clouds. Furthermore, by embedding the proposed methodology into 

the LiDAR-SLAM processing, we verify that our proposed methodology can achieve the 

improvement of the segmentation cost, the simultaneous mapping with point cloud 

acquisition, and 3D modeling. We use a streaming point cloud dataset obtained with a 

water-borne mobile mapping system for the validation experiments because the proposed 

methodology combines LiDAR data, multi-beam scanning sonar data, external orientation 

parameters estimated with SLAM and GNSS, and GPS time. 
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Methodology 

a. GNSS/LiDAR-SLAM:  

GNSS/LiDAR-SLAM is a processing that simultaneously achieves seamless GNSS/non-

GNSS positioning and point cloud generation by integrating GNSS positioning and 

external orientation parameter estimation using LiDAR-SLAM (Nakagawa et al., 2023). 

The methodology consists of LiDAR-SLAM based on iterative closest point scan 

matching (Chen et al., 1992), correction of external orientation parameters using GNSS 

positioning results, and point cloud integration using external orientation parameters 

(Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed methodology. 

 

The LiDAR data for GNSS/LiDAR-SLAM is acquired using multi-layered LiDAR, which 

can acquire point clouds including multiple cross-sectional information. Our proposed 

GNSS/LiDAR-SLAM with seamless GNSS/non-GNSS positioning is a loosely coupled 

processing integrated GNSS data as the reference data and LiDAR-SLAM results as 

inertial data. In the processing, GNSS position data are used for data rectification of 

accumulated errors in the self-position and attitude estimation using LiDAR-SLAM. The 

GNSS/LiDAR-SLAM can omit a loop closure for the accumulated error adjustment; thus, 

this methodology is suitable for measurement in rivers where loop closure cannot be 

formed. 

Precise point positioning (PPP) using the centimeter-level augmentation service (CLAS) 

is used as real-time kinematic PPP (RTK-PPP) (Mimura et al., 2020) for global position 
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data acquisition in GNSS/LiDAR-SLAM. The PPP-RTK positioning using CLAS is 

slightly less accurate than RTK-GNSS positioning and cannot be used outside of Japan. 

However, the PPP-RTK methodology using CLAS has high availability and convenience 

because positioning is available without reference station installation, constant 

communication with the reference stations, and consideration of baseline length 

constraints to keep positioning accuracy. 

 

b. Segmentation of streaming point clouds:  

An overview of the segmentation of streaming point clouds is shown in Figure 2. In the 

segmentation of streaming point clouds, range image generation, label image generation, 

and point cloud labeling are applied to the point clouds obtained in each scene as the basic 

processing. The labeled point clouds are integrated into labeled point clouds of the 

following scenes along the horizontal axis direction in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Streaming point cloud segmentation. 

 

In range image generation using LiDAR data, 3D range images are generated with the x-

axis as scanning lines, the y-axis as LiDAR channels, and the z-axis as point cloud 

coordinate values (X, Y, Z), LiDAR reflection intensity values, and label information, as 

shown in Figure 3. In the z-axis direction, identified label numbers and normal vectors (in 

X, Y, and Z directions) can be added to the range images. Moreover, in the range image 

generation using multi-beam scanning sonar data, 3D range images are generated with the 

x-axis as scanning lines, the y-axis as sonar channels, and the z-axis as point cloud 

coordinate values (X, Y, Z) and label information. 
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Figure 3: Range images from scanning data. 

 

Figure 4 shows the details of the label image generation and point cloud labeling in Figure 

2 as an overview of the labeling processing in the segmentation of streaming point clouds. 

The vertical axis indicates each segment and the horizontal axis indicates the data 

acquisition flow. The labeling process consists of four types of processes: new label 

creation, label connection, label integration, and labeling termination. When no segment 

corresponding to the previous scene exists, a new label is created. When no segment 

corresponding to the next scene exists, labeling is terminated. The label connection 

assigns the same label number when segments are mapped between consecutive scenes. In 

the label integration, when segments with different labels are label-connected in the 

mapping of segments between consecutive scenes, the connected segments are 

overwritten with the same label to avoid inconsistencies in labeling. 

 

 

 

 

 

 

 

 

 

Figure 4: Labeling processing in streaming point cloud segmentation. 

Segment: 1

Label: 1

Segment: 1

Label: 1

Segment: 2

Label: 2

Segment: 3

Label: 3

Segment: 4

Label: 4

Segment: 2

Label: 2

Segment: 3

Label: 3

Segment: 1

Label: 1

Segment: 2

Label: 3

Segment: 3

Label: 5

Labeling termination

New label 
creation

Label 
integration

Scene 1 Scene 2 Scene 3 ・・・Scene N

Label 
connection



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 8 of 19 
 

 

The results obtained from the streaming point cloud segmentation are managed in a 

segment layer that handles labeled segments obtained from each scene, a cluster layer that 

handles segments integrated by labels, and a 3D model layer (CityGML layer) that 

handles the semantics of segments in the cluster layer (Figure 5). In this study, we classify 

point clouds through the streaming point cloud classification into bridges, revetments, and 

buildings. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Feature classification using labeled point clouds. 

 

c. Classification of streaming above water point clouds:  

In the streaming point cloud classification, bridges, revetments, and buildings are 

extracted and classified, as shown in Figure 6. First, bridges are extracted from point 

clouds using bounding boxes generated from the river width and bridge height estimated 

from LiDAR scanning data. After bridge extraction, revetments and buildings are 

extracted from point clouds, as shown in Figure 7. First, the point clouds are rendered into 

a range image. Next, the height of the water surface is estimated from the scanning line. 

Then, the top edge of the revetment is estimated using the discontinuity from the water 

surface on the scanning line. The height of the water surface is obtained from the change 

points on the scan line that are lower than the LiDAR position and extracted using the 

plane symmetry of the point clouds due to the specular reflection of LiDAR. Using the top 

edge of the revetment as the threshold of approximate ground level, revetments and 

buildings are classified from the point clouds. The threshold is determined independently 

for the left and right revetments. 
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Figure 6: Feature classification using streaming point clouds  

(bridges, revetments, and buildings). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Feature classification using streaming point clouds (revetments and buildings). 

 

The building extraction from point clouds is shown in Figure 8. First, point clouds in 

space higher than an arbitrary height (one or two floors of a building) are selected so that 

the buildings are not connected by neighbor ground objects in the segmentation. Next, the 

selected point clouds are projected into a 2D cell space set in the horizontal plane for 

building labeling. Furthermore, when walls and windows are extracted from the point 
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clouds, we can use edges and surfaces extracted depth and normal vector images 

generated from point clouds through point cloud projection processing, as shown in 

Figure 3. 

 

 

 

 

 

 

 

 

Figure 8: Building labeling with 2D cell space. 

 

d. Classification of streaming underwater point clouds:  

3D underwater maps are required for boat navigation in urban rivers for collision and 

stranding avoidance. Thus, we summarize the possible features that can be estimated from 

underwater point clouds, as shown in Table 1. 

 

Table 1: Feature modeling from underwater point clouds. 

 

 

 

 

 

 

 

 

In collision and stranding avoidances, a DSM generated from underwater point clouds is 

used for navigation to estimate the distance from a boat to an object. Moreover, when 

using underwater point clouds for navigation, the navigation uses geometrical information 

with attribute information of objects. Thus, based on the survey of geographic features 

that can be estimated from underwater point clouds, we classify the underwater point 

clouds into three types: revetments, sediment surfaces, and other features. 
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Point cloud classification methodologies are classified into unsupervised learning, 

supervised learning, and knowledge-based classification. Underwater point clouds 

measured in shallow water areas such as urban rivers include large sparse differences and 

many missing regions due to occlusion. Thus, the underwater point clouds include many 

scenes that are unsuitable for unsupervised and supervised learning. By contrast, when we 

use structured point clouds or random point clouds with large sparse differences and large 

missing regions, knowledge-based classification is often better in terms of computational 

cost. Therefore, knowledge-based classification is applied for underwater point cloud 

classification, as shown in Figure 9. 

 

 

 

 

 

 

 

Figure 9: Classification of underwater point clouds. 

 

Random point cloud structuring is a simple process to reconstruct multi-beam sonar 

scanning from random point clouds using GNSS positioning data. The processing 

simplifies the segmentation processing, such as RANSAC and region growing-based 

segmentation (Ni et al., 2016) because scanning angles can be used for the top edge 

estimation of underwater revetments and reduction of the number of thresholds in feature 

extraction, as shown in Figure 10. The threshold values for underwater point cloud 

segmentation in our research are only the initial slope angle of revetment (75°) and the 

water depth (2 m below the water surface) for obstacle detection. 

 

 

 

 

 

 

Figure 10: Structured data generation from random point clouds. 
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Experiments 

a. Water-borne mobile mapping system: 

We prepared a water-borne mobile mapping system mounted on an autonomous battery-

powered boat (Raicho I), as shown in Figure 11. We used horizontal scanning LiDAR 

(VLP-32C, Velodyne) and oblique LiDAR (VLP-32C, Velodyne) for dense streaming 

point cloud acquisition and pose estimation. The LiDAR data were acquired at 10 Hz. 

Moreover, we used a GNSS antenna (GPS-703-GGG, Novatel) connected to a GNSS 

receiver (AsteRx4, CORE) for PPP based on real-time kinematic positioning with CLAS 

using quasi-zenith satellite systems. We also used an RTK-GNSS receiver (ZED-F9P, u-

blox) for position error evaluation. The GNSS position data were acquired at 5 Hz. In 

addition, we used a multi-beam scanning sonar (BV5000, Teledyne BlueView) with RTK-

GNSS positioning for dense streaming point clouds on underwater surfaces. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Water-borne mobile mapping system. 

 

b. Data acquisition of GNSS/SLAM-LiDAR point clouds: 

We acquired dense point clouds above water surfaces with GNSS/LiDAR consisting of 

two LiDARs and PPP based on real-time kinematic positioning with a CLAS using a 

quasi-zenith satellite system. The navigation route was from Tokyo University of Marine 

Science and Technology (Etchujima) to the Sumida-gawa River, Kanda-gawa River, 

Nihonbashi-gawa River (Figure 12), and back to the Etchujima campus between 10:00 

and 11:30 on October 13, 2023, when the tidal level in Tokyo Bay was low, and each 

LiDAR acquired 66,500 frames (6,650 seconds) of point clouds (2.6 billion points in total) 

with the navigation speed from 4 to 6 knots in a nearly windless environment. The point 
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clouds generated with the GNSS/LiDAR-SLAM processing are shown in Figure 13. From 

the measurement routes, the section from the Izumi-bashi bridge to the Shinkansen bridge 

on the Kanda-gawa River was selected for our experiment, as shown in Figure 14, because 

the section had difficulty for CLAS to estimate a re-FIX solution due to the surrounding 

buildings even though no obstructions existed in the zenith direction. We processed 76 

million streaming point clouds (1,180 frames) with a point density of approximately 0.05 

m. 

 

 

 

 

 

 

 

 

 

Figure 12: Navigation path. 

 

 

 

 

 

 

 

Figure 13: Point clouds generated with GNSS/LiDAR-SLAM. 

 

 

 

 

 

 

 

Figure 14: Selected section for LiDAR point cloud processing. 
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Figure 15 shows an overview of the streaming point clouds used in our experiment. Image 

a is the point clouds obtained by oblique scan LiDAR at a scan, image b is a part of the 

point clouds integrated with the position and attitude estimation results, and image c is the 

oblique scan LiDAR strip image. The strip image is a rendered image with the vertical 

angle of the scanning line in the vertical direction and the frame number in the horizontal 

direction as a quick-look image of the measured section. In our experiment, the LiDAR 

reflection intensity values on channel 17 (center channel of LiDAR) of the oblique scan 

LiDAR were assigned to each pixel in the strip image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Clipped streaming point clouds. 

 

c. Data acquisition of multi-beam scanning sonar point clouds: 

On September 15, 2023, at low tide, we acquired 17 million points at the section from 

Sumida River to Ochanomizu along the left and right banks of the Kanda-gawa River 

during two round trips. The navigation speed was approximately 3 knots to prevent the 

attitude of the mounted transmitter/receiver from being displaced by water currents. The 

point cloud density was 0.06 to 0.10 m in the navigational direction and 0.04 m in the 

scanning direction. The point clouds at the bottom of the river were not acquired because 

the water depth was too shallow to be measured (Figure 16). Although only the point 

clouds in the RTK-Fix solution should be processed for the measurement by the multi-

beam scanning sonar because the result depends on the RTK-GNSS positioning results, in 

this study, all point clouds of the RTK-Fix, RTK-Float, and dead reckoning Fix solutions 
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were included in the processing. Eight sections were selected visually considering the 

geological structure of the Kanda-gawa River, as shown in Figure 17. 

 

 

 

 

 

 

 

 

Figure 16: DSM generated from underwater point clouds. 

 

 

 

 

 

Figure 17: Selected sections for underwater point cloud processing. 

 

Results and Discussion 

The processing time for GNSS/LiDAR-SLAM was approximately 129 seconds (0.1095 

[s/frame]), and that for segmentation was about 16 seconds (0.0138 [sec/frame]) (all 

processing environment: CPU: Intel Core i7-1255U 1.70 GHz, RAM: 32 GBytes) for the 

generated point clouds as shown in Figure 18. 

 

 

 

 

 

 

Figure 18: GNSS/LiDAR-SLAM processing results. 

 

Figure 19 and Figure 20 show the segmentation results of the streaming point clouds. 

Figure 19 and Figure 20 also indicate that revetments, buildings, and bridges of point 

clouds were managed with layers. 
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Figure 19: Segmentation results (bridges, revetments, and buildings). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Segmentation results (buildings). 

 

Although the accumulated error in LiDAR-SLAM processing without GNSS rectification 

was 4.838 m for 1,180 frames (Table 2), the accumulated error in LiDAR-SLAM 

processing was 0.0041[m] per frame. We can mention that our methodology rectified the 

accumulated errors using GNSS within the CLAS positioning accuracy and our 
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methodology achieved higher accuracy than the LiDAR ranging accuracy of 0.03[m] 

(catalog value). Moreover, the GNSS/LiDAR-SLAM can estimate positions where GNSS 

positioning is not available with sufficient accuracy. We confirmed that the 

GNSS/LiDAR-SLAM can process in 0.1095 [s/frame]. We also confirmed that the 

segmentation (including the classification of bridges, revetments, and buildings) and the 

classification of each building can be processed in 0.0138 [s/frame]. Thus, we confirmed 

that our proposed methodology can process simultaneous 3D mapping with point cloud 

acquisition and annotation generation with simultaneous processing with LiDAR-SLAM. 

 

Table 2: Pose estimation error evaluation. 

 

 

 

 

 

 

 

Figure 21 shows a part of the underwater point cloud segmentation results. The processing 

time for each of the eight sections (CPU: Intel Core i7-1255U 1.70 GHz) is shown in 

Table 3. We proposed a methodology for classifying point clouds acquired by multi-beam 

scanning sonar into two categories based on knowledge-based classification: river 

structures such as revetments and landforms such as sediments. In terms of classification 

performance, we confirmed the usefulness of a simple reproduction of multi-beam sonar 

scanning from random point clouds using GNSS positioning data. 

 

 

 

 

 

 

 

Figure 21: Segmentation results (underwater). 

 

 

Section

ID

Elapsed

time [sec]

Positioning

solution

Start

frame

End

frame

Baseline

length [m]

SLAM

error[m]

SLAM error [m] /

Baseline length [m]
Notes

-- 15.8 FIX 1 159 35.937 2.026 0.056 79 adjusted data

1 21.6 No FIX 161 217 13.262 0.041 0.003

-- 23.8 FIX 219 239 5.182 0.205 0.040 11 adjusted data

2 103.0 No FIX 241 1031 182.110 0.662 0.004

-- 109.8 FIX 1033 1099 15.170 1.159 0.076 34 adjusted data

3 116.0 No FIX 1159 1161 14.272 0.517 0.036

-- 118.0 FIX 1163 1181 4.475 0.228 0.051 10 adjusted data

Total 270.408 4.838

SLAM error (overall) : 0.0041[m/frame]
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Table 3: Processing time for underwater point clouds. 

 

 

 

 

 

Conclusion 

In this research, we focused on the integration of image-based and 3D-based approaches 

embedded in SLAM and mobile mapping. We proposed a methodology to improve the 

performance of streaming point cloud processing based on image-based and 3D-based 

point cloud segmentation for 3D mapping of urban river environments. We also 

developed a methodology of streaming point cloud segmentation embedded in 

GNSS/LiDAR-SLAM and multi-beam scanning. Through our experiments using a water-

borne mobile mapping system, we confirmed that our methodology can improve the 

scalability of point cloud processing and achieve high-speed processing and precise 

classification as well as conventional image-based and 3D-based point cloud segmentation 

approaches. 
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