
                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 1 of 17 
 

Efficiency Improvement of SfM/MVS by Omni-directional Camera 
Network Estimation for Water-borne MMS 

 
*Teruhiko Meguro1, Naoto Kimura1, Masafumi Nakagawa1, 

Takeshi Komori2, Nobuaki Kubo2, Etsuro Shimizu2 
1Shibaura Institude of Technology 

2Tokyo University of Marine Science and Technology 

*ah20092@shibaura-it.ac.jp 

Abstract : In recent years, the development of real-space base data for urban digital twins has 
advanced, driven by the need for accurate and efficient spatial data in urban environments. Two 
primary methods are used to generate base data in urban river spaces: LiDAR (Light Detection and 
Ranging) and camera-based techniques. The LiDAR method is particularly advantageous due to its 
ability to directly measure distance data, making the generation of point clouds relatively easy. 
However, the point cloud generation process in mobile mapping systems using LiDAR is highly 
dependent on the accuracy of the external orientation parameters, requiring high-performance GNSS 
(Global Navigation Satellite System) and IMU (Inertial Measurement Unit) systems, making the 
equipment expensive and complex. In contrast, camera-based methods, primarily using Structure 
from Motion (SfM) and Multi-View Stereo (MVS), offer a more cost-effective alternative for point 
cloud generation, although they are slower than LiDAR. Despite the longer processing time, camera-
based systems are inexpensive to build and deploy. Simultaneous localization and mapping using 
LiDAR (LiDAR-SLAM) combined with GNSS positioning has been shown to be effective for 3D 
measurements in urban river environments. However, in cases where high-frequency 3D 
measurements or anomaly detection in civil engineering structures are required, camera-based 
methods offer advantages over LiDAR, such as improved flexibility and adaptability. A major 
challenge in wide-area camera measurements with cameras is the increased processing time due to 
the enormous number of captured images required to generate point clouds. To address this issue, 
this study proposes a method to improve the efficiency of point cloud measurements in urban river 
environments. This includes the use of omnidirectional cameras to increase the acquisition efficiency 
and the development of a method to optimize the SfM/MVS processing. Specifically, the study explores 
the estimation of an omnidirectional camera network that takes into account the fixed baseline 
relationships between cameras and the improved multi-perspective capabilities achieved through 
round-trip image acquisition. These innovations are expected to significantly reduce processing time 
while maintaining the accuracy and reliability of the generated point clouds, offering a promising 
approach for efficient urban river space measurements. 

Measurement keywords: Camera network estimation, Multi-view stereo, Structure from 
Motion, Water-borne MMS 
 
 
Introduction 

In recent years, the development of real-world infrastructure data for urban digital twins of 

cities has been promoted. In Japan, there is PLATEAU, a project led by the Ministry of Land, 

Infrastructure, Transport and Tourism to develop and open-source 3D city models for the 
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entire country. This project promotes the 3D modeling of urban infrastructure such as 

buildings and highways. However, in PLATEAU, the development of 3D models for river 

structures such as river banks, water gates, and bridges has not yet been fully implemented, 

which is a prominent issue in terms of the accuracy and comprehensiveness of urban digital 

twins. The main methods for generating infrastructure data in urban river spaces are the 

method using LiDAR and the method using a camera. The method using LiDAR has the 

characteristic that it can easily generate point clouds because it can directly measure distance 

data. However, the point cloud generation method used in the mobile mapping system is 

highly dependent on the accuracy of the external orientation, so there is a problem that the 

performance required for GNSS/IMU is high and the equipment is extremely expensive. In 

the point cloud generation using a camera, SfM/MVS is applied. Although it is inferior to the 

method using LiDAR in terms of the time required to generate the point cloud, the 

measurement system can be constructed inexpensively. It has been confirmed that LiDAR-

SLAM combined with GNSS positioning is effective for the 3D measurement of urban river 

spaces (Nakagawa et al., 2022). However, it is difficult to obtain accurate position 

information using GNSS in places where the sky is blocked, such as bridges and highways. In 

addition, in urban environments, the need for high-frequency 3D measurements in urban 

environments is increasing due to the deterioration of infrastructure and the increasing risk of 

disasters. There are other situations where multiple measurements are needed in a short 

period of time, such as detecting deformations in civil engineering structures and quickly 

assessing the damage situation during disasters. The camera-based method can be applied to 

such high-frequency measurements, and allows for rapid data updates, especially in large 

urban river areas. However, in wide-area measurements, the increase in processing time for 

point cloud generation processing time due to the enormous number of images acquired is a 

major issue. In addition, in urban environments, the need for high-frequency 3D 

measurements in urban environments is growing due to the deterioration of infrastructure and 

the increasing risk of disasters. For example, there are an increasing number of situations that 

require regular and frequent measurements are required, such as detecting anomalies in civil 

engineering structures and quickly assessing the damage situation during disasters. For such 

high-frequency 3D measurements and detection of anomalies in structures, camera-based 

methods have advantages over LiDAR-based methods. However, when measuring large areas, 

a major issue is the increased processing time required to generate point clouds due to, the 

enormous number of images that need to be captured. In this study, we focus on the 

SfM/MVS method and improve it to address these issues. 
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Methodology 

The proposed method consists of omnidirectional camera images image preprocessing, 

mask image generation, feature point extraction, omnidirectional camera network 

estimation for image pair estimation, SfM/MVS processing using the image pair 

estimation results, back-projected point cloud generation and error evaluation using point 

clouds, as shown in Figure 1. 

 
Figure 1: Proposed methodology. 

As a comparison with the proposed method, an exhaustive search is applied in the matching 

search as conventional methods. 

 

a. Conventional Methodology: 

Image matching in SfM processing typically uses, a brute-force search to find corresponding 

images for each image, as shown in Figure 2. 
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Figure 2: Brute force matching example. 

However, this method requires long processing times because it searches for image pairs that 

cannot be matched due to the relative positions of the cameras, or the subject being 

photographed. In this study, we generate point clouds using brute force matching as a 

comparison to the proposed method. 

 

b. Mask image generation for omnidirectional camera images: 

In this study, we use an omnidirectional camera consisting of a total of six cameras. Although 

the omnidirectional camera has five side cameras and one top camera, the images from the 

five side cameras are used. The pre-processing of the omnidirectional images consists of 

cropping, distortion correction, and mask processing. The input images are organized based 

on each direction of the omnidirectional camera, as shown in Figure 3. 

 
Figure 3: Folder structure. 
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The images used contain many areas that reflect the water surface, sky, people, and boats that 

serve as measurement platforms, which can lead to the detection of unnecessary feature 

points in the SfM processing, resulting in corresponding points (Figure 4). 

 
Figure 4: Image issues. 

Therefore, we create a mask image for each camera image (Figure 5). By using this mask 

image, we can limit the area of feature point detection and reduce unnecessary image 

matching processing in areas where feature point matching should not be performed. The 

mask image is generated by performing image difference, opening, and closing, and 

annotation in this order. Image difference uses two different images captured by the same 

omnidirectional camera and detects areas in the image where the pixel difference is small by 

taking the difference between them. Next, an initial mask image is generated by setting a 

certain threshold for the difference image. However, the mask image at this stage is based on 

pixel-by-pixel differences, and the masked area is still sparse, with some areas being very 

small. For this reason, the opening and closing process is used to more roughly specify the 

mask area more roughly. Opening and closing is a process that repeatedly dilates and shrinks 

on a binary image. In opening, the mask area can be expanded by dilating the image. In 

closing, noise such as small mask regions present in the mask image can be removed by 

shrinking the image (Maxell Frontier Co., Ltd, 2021). This converts fine mask regions into 

coarse mask regions, which simplifies the image segmentation. However, there is a 

possibility that the mask image may have small areas of both white and black after processing. 

To solve this problem, labeling is performed. Labeling is a process of assigning labels to 

continuous white areas within a binary image. In this study, the number of pixels in all 

labeled white areas is calculated, and areas below a certain threshold are changed to black 

areas, and a similar process is performed on the black areas to ensure that there are no small 
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areas exist. The mask image generated by this series of processes is used for feature point 

detection and image matching. 

 
Figure 5: Masking. 

 

c. Omnidirectional camera network estimation 

When using an omnidirectional camera, the relative positional relationship between each 

camera is known. Consider the positions and optical axis directions of camera 1 and camera 2 

in frame m as shown in Figure 6. If the positional relationship between the two images is on 

the same path and has the same frame number, there is a constraint. Assuming that the 

horizontal camera is in the n direction, the position coordinates 𝑝𝑝𝑚𝑚1 of camera 1 in frame m 

are (𝑥𝑥1𝑚𝑚,𝑦𝑦1𝑚𝑚, 𝑧𝑧1𝑚𝑚) , and the position coordinates 𝑝𝑝𝑚𝑚2  of camera 2 in frame m are 

(𝑥𝑥2𝑚𝑚, 𝑦𝑦2𝑚𝑚, 𝑧𝑧2𝑚𝑚). The optical axis vector 𝑡𝑡𝑚𝑚1����� of camera 1 is (𝛼𝛼1𝑚𝑚,𝛽𝛽1𝑚𝑚,𝛾𝛾1𝑚𝑚), and the optical 

axis 𝑡𝑡𝑚𝑚2����� of camera 2 is (𝛼𝛼2𝑚𝑚,𝛽𝛽2𝑚𝑚, 𝛾𝛾2𝑚𝑚). Assuming that the cameras in the coordinate system 

in which the point cloud is generated are very small, the center coordinates of each camera 
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can be approximated to be the same, and the difference in the angle difference in the optical 

axis direction between each camera is known, the relationship between the position of each 

camera and the optical axis direction in the same frame can be expressed as follows. 

 
Figure 6: Camera network. 

(𝑥𝑥1𝑚𝑚,𝑦𝑦1𝑚𝑚, 𝑧𝑧1𝑚𝑚) = (𝑥𝑥2𝑚𝑚,𝑦𝑦2𝑚𝑚, 𝑧𝑧2𝑚𝑚) (1) 
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Figure 7 shows an overview of the omnidirectional camera network estimation, which 

supports round-trip image acquisition.  

 
Figure 7: Camera network with round-trip images 
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With omnidirectional camera network estimation, the search area can be limited based on the 

relative positions of each camera. This prevents searching between cameras that do not match, 

such as when the camera directions are more than 180 degrees opposite. When focusing on 

two images, if there are paired images with a high matching number and strength from the 

shooting camera and nearby camera images, the paths of the paired images are saved in a text 

file as a matching list. In addition, the matching list is loaded into COLMAP, a free software 

for SfM, so that some of the folder paths are listed, as shown in Figure 8. 

 
Figure 8: Example of matching list. 

 

d. Structure from Motion (SfM) and Multi-View Stereo (MVS) 

SfM is a technology that simultaneously estimates 3D structure and camera pose from 

multiple 2D images. SfM is a method that simultaneously reconstructs the camera motion 

(Motion) and the 3D structure (Structure) of a scene by inputting multiple images from 

different viewpoints and tracking corresponding feature points between these images. The 

major advantage of SfM is that it can reconstruct 3D information from standard 2D images 

without the need for complex sensors or prior information. Therefore, SfM has a wide range 

of applications and has been used in topographic surveying by drones (Nex et al., 2014), 

digital archiving of cultural assets (Remondino et al., 2006), and construction of 3D spaces in 

AR/VR systems (Zhang et al., 2019).  

Methods for extracting feature points used in SfM processing include Oriented fast and 

Rotated BRIEF (ORB) (Rublee et al., 2011)  and Scale Invariant Feature Transform (SIFT) 

(Lowe, 2004). SIFT is often used in SfM processing because it has the advantage of being 
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independent of rotation and scale. However, it has the disadvantage that it takes time to 

compute the distance between feature vectors. Therefore, in this study, we use ORB, a 

method for expressing features as binary vectors. Feature points in the image excluding the 

mask image area are detected.  

MVS is a technique for reconstructing a high-density scene from 2D images acquired from 

multiple viewpoints. MVS is known as a method to reconstruct a highly accurate 3D shape by 

complementing the camera positions and initial 3D point clouds obtained mainly by SfM. 

MVS is used in various computer vision applications because it accurately reconstructs the 

entire surface of a scene using the geometric relationship between corresponding viewpoints. 

The feature of MVS is that it can generate a high-density 3D point cloud by using additional 

image data for the low-density initial point cloud obtained by SfM. Therefore, MVS is widely 

used in fields that require detailed 3D models, such as 3D scanning, topographic surveying 

(Furukawa et al., 2010), urban modeling, and virtual reality content creation (Schöps et al., 

2017). 

SfM processing using the matching list and mask image, SfM processing using the 

conventional method, and MVS processing were performed using COLMAP, an open source 

SfM/MVS tool. This software was selected because it can detect feature points using mask 

images and has higher performance than other free SfM software. In COLMAP, the proposed 

method reads the mask image and matching list, and then generates a sparse point cloud 

through SIFT feature point detection, camera position estimation, and bundle adjustment. 

Then, based on the results, MVS processing was performed to generate a dense point cloud. 

On the other hand, the conventional method performed image matching by full search, and 

then generated a dense point cloud by MVS processing in the same way as the proposed 

method. 

 

e. Back projection: 

Back projection is a technique for reconstructing points in 3D space from their 2D 

coordinates in an image. It is the process of projecting a point on a 2D image plane back into 

3D space using the intrinsic parameters of the camera. Specifically, an image coordinate 𝑝𝑝 =

[𝑢𝑢, 𝑣𝑣]𝑇𝑇  is mapped to a corresponding 3D point 𝑋𝑋𝑤𝑤 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇  using the intrinsic camera 

parameter matrix 𝐾𝐾. The intrinsic camera parameter matrix 𝐾𝐾 is defined as follows: 
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𝐾𝐾 = �
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Here, 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 represent the focal length of the camera, and 𝑐𝑐𝑥𝑥 and 𝑐𝑐𝑦𝑦 represent the optical 

center. In back projection, the three-dimensional camera coordinate 𝑋𝑋𝑐𝑐 = [𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐, 𝑧𝑧𝑐𝑐]𝑇𝑇 can be 

calculated from the 2D image coordinate p using the following equation. 

𝑝𝑝 = 𝐾𝐾 ∙ 𝑋𝑋𝑐𝑐 (5) 

The Z coordinate 𝑧𝑧𝑐𝑐 represents the depth, and is usually a known or estimated value. Thus, 

for each 2D point in the image, the corresponding point in 3D space can be estimated. This 

method makes it possible to reconstruct a 3D point cloud with high accuracy from 2D images 

taken from multiple viewpoints. In addition, since the back projection is based on the 

correction of camera parameters, precise calculations can be performed that take into account 

the correction of lens distortion and the effects of focal length. In this study, the dense point 

cloud generated by the SfM/MVS processing was converted to homogeneous coordinates, 

and the back projection was performed using the Z coordinate value of the point cloud. 

 

f. Error evaluation: 

RMSE is an index to quantitatively evaluate the error between the actual observed value and 

the estimated value (Iwahori, 2015). In this study, the difference in coordinate values of the 

point cloud generated by back projection for the point cloud generated by SfM/MVS 

processing is calculated using the RMSE, and the accuracy is evaluated as the back projection 

error. The RMSE is defined by the following formula. 
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(6) 

Here, the true 3D point in the world coordinate system is 𝑋𝑋𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the estimated point in the 

camera coordinate system is 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒, the total number of points is 𝑁𝑁, and the rotation matrix and 

the translation from the camera coordinate system to the world coordinate system are 𝑅𝑅𝑇𝑇 , 𝑡𝑡  

respectively. 
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Experiment 

On September 15, 2023, surface measurements were conducted from the battery-powered 

boat Raicho I. The boat was equipped with the first LiDAR (VLP-16, Velodyne), the second 

LiDAR (VLP-32C, Velodyne), CLAS receivers (AsteRx4, Septentrio), and an 

omnidirectional camera (Ladybug5, FLIR), as shown in Figure 9. 

 
Figure 9: Water-borne MMS. 

 
Figure 10: Experiment area. 

A desktop PC was used to process the omnidirectional images (CPU: Intel(R) Core (TM) i7-

11700, memory: 32GB, GPU: NVIDIA GeForce GT 1030). Of all the measurement data, 500 

images near Manseibashi Bridge (Figure 10) were used for SfM/MVS processing using 

COLMAP, a free SfM software. In the experiment, data were collected on a round trip route 
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up and down the river. By masking the boat itself, the LiDAR installed on the boat, and the 

sky with a mask image, only the image areas to be converted into point clouds were left. 

 

Results 

The results of the image masking, image matching, and SfM/MVS processing, as well as an 

evaluation of each point cloud, are described below. 

 

a. Masking images: 

The total time to generate the mask images was 813 seconds, or 1.6 seconds per image. 

 
Figure 11: Example of mask processing results for omnidirectional camera images. 

 

Figure 11 shows a composite image of the mask images from each camera and the original 

image in a given frame. While the overall masking of the sky, boats, and rivers was 

successful, there were problems with not masking small areas that were not needed to match 

some of the equipment installed on the boats. There was also a technical issue with masking 

being performed on areas that did not need to be masked, such as buildings and revetments 

that appeared dark in the image. This is thought to be due to the low brightness of the images, 

making it difficult to detect differences such as edges between the two images. 
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b. Image Matching Search and SfM Processing: 

The image matching search and SfM processing times are shown in Table 1. In the proposed 

method, the frame difference for matching was calculated between each camera in the 

omnidirectional camera was calculated, and a small search area was set based on this 

information to perform the image matching search. In the image matching search, it took 

about 813 seconds to calculate the frame difference between images, which was longer than 

the matching search time, but the total image matching processing time was about 10 times 

that of brute force matching. On the other hand, in SfM processing using COLMAP, the 

conventional method used all 500 images to estimate the camera position, but the proposed 

method used only 222 images. This is thought to be because matching pairs could not be 

successfully searched for when loading the matching on COLMAP. Due to the difference in 

the number of images used, the number of point clouds generated by the proposed method 

was about 7 times smaller than that of the conventional method. 

 

Table 1: Comparison of image matching search and SfM processing times. 
Conventional method Proposed method

Inter-image range search time 744.9
Matching list creation time 10274.4 446.3

Feature extraction 22.4 23.0
Feature matching 333.4 3.5

Resume reconstruction 1591.8 39.3
12222 1257
500 222

45473 6779

Total time of SfM processing[s]
The number of images
The number of points

813.0

SfM processing[s]

Matching search

COLMAP

Mask image creation[s]

 
 

c. MVS processing and point cloud evaluation: 

Figure 12 shows the dense point clouds generated by MVS processing in two cases, the 

conventional method, and the proposed method, based on the camera position estimated by 

SfM processing. First, we focus on the shape of the point clouds and evaluate and compare 

the dense point clouds generated by the conventional method and the proposed method. The 

dense point cloud generated by the conventional method has a rough shape restoration overall. 

However, there is more noise around the river compared to the point cloud generated by the 

proposed method. In addition, in places such as river banks where the same texture continues 

for a long section, there is a problem that the generation location is generated on the opposite 

bank, as shown in Figure 13.  
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Figure 12: Dense point clouds using conventional and proposed methods. 

 
Figure 13: Wrong location for point cloud generation. 
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This is believed to be due to erroneous matching between pairs that are physically impossible 

to match because there is no constraint on the camera direction. The dense point cloud 

generated by the proposed method can generate buildings that are relatively far away (Figure 

14) because unnecessary image matching processing can be removed in advance, and it was 

confirmed that the point cloud can be generated for the bank and surrounding buildings, and 

the shape of the structure can be fully captured. While the point cloud was generated at a 

level where the letters on the buildings could be read, it was confirmed that the plan shape of 

the interior of the buildings was not correctly generated, as shown in Figure 15. 

 
Figure 14: Point cloud generation of a building far from a river. 

 
Figure 15: Building point cloud generation. 

 

Next, we compare the results based on the processing time and RMSE. The total processing 

time and RMSE are shown in Table 2. In MVS processing, the conventional method took 

longer to process than the proposed method due to the difference in the number of matching 

images. When comparing the total processing time and the number of dense point clouds 
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generated, the proposed method was able to reduce the time by about three times compared to 

the conventional method. At the time of SfM processing, there was a difference of about 

seven times in the number of point clouds between the sparse point clouds of the 

conventional method and the sparse point clouds of the proposed method, but it was 

confirmed that the reduction could be limited to about 1.3 times with MVS processing. In the 

RMSE evaluation using the back-projected point cloud, we confirmed that the error was 

small in both cases. 

Table 2: Total processing time and error evaluation. 

Conventional method Proposed method
Mask image creation[s]

SfM processing[s] 12222 1257
MVS processing[s] 40276 16359

Total time[s] 53311 18429
The number of points 2294850 1698971
RMSE evaluation[m] 0.0234 0.0266

813

 
 

Conclusion and Recommendation 

In this study, we proposed a method to improve the processing efficiency of SfM/MVS using 

omnidirectional camera network estimation, which consists of efficient image matching by 

improving the multi-viewpoint relationship of each camera and improving the multi-

viewpoint quality by shooting in both directions, using a group of omnidirectional camera 

images measured from a boat navigating an urban river, and compared and verified the 

SfM/MVS point clouds of the conventional method and the proposed method. The processing 

results confirmed that it is possible to establish an automatic mask generation method that is 

not limited by each camera and shooting location, and to improve the efficiency and accuracy 

of point cloud generation by using an omnidirectional camera network. Future challenges 

include improving the mask generation method to focus more on the image. The goal is to 

eliminate the small areas of sky that occurred in this study and to more accurately protect 

targets. In addition, there are improvements to the method and bridge inspection using a top-

view camera. We aim to automatically search for image-matching search sections and 

automatically generate bridges based on the brightness and features between top-view camera 

images by using a top-view camera that was not used in this study. 
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