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Abstract: Forest fires significantly threaten ecosystems, contributing to climate change and 

greenhouse gas emissions. Effective prediction and detection of forest fires can greatly mitigate their 

damage. Lightning and climate conditions are the primary factors in initiating fires. The first step in 

predicting forest fires involves collecting historical data on climate, lightning, and fire-prone regions. 

Remote sensing technology is used to gather satellite images at regular intervals. An automatic 

statistical learning technique is employed to develop HyperFusionNet, a deep learning classifier that 

predicts the severity of wildfires caused by lightning events based on lightning data. A regression 

model called Climate Predictor is designed to analyze climate data, incorporating factors such as 

temperature, humidity, and wind speed and predicting a region's climatic conditions, which can aid in 

predicting fire occurrence. SymbioticNet is a machine learning algorithm model for predicting the 

Flash Extent Density (FED) of lightning, which can help us to determine regions prone to lightning. 

Combining these models enables more accurate predictions of forest fires. Integrating 

HyperFusionNet for wildfire severity prediction, Climate Predictor for climate data, and 

SymbioticNet for flash extent density of lightning enhance early warning systems and control 

measures. This integrated method leverages historical data and advanced remote sensing to 

effectively predict and mitigate forest fires, reducing their environmental impact. 

Keywords: Forest Fires, Lightning-ignited Fire, Fire Detection, Deep Learning, 

SymbioticNet 
 
 

Introduction  

Wildfires represent one of the most devastating natural disasters, posing a severe threat to 

ecosystems, human life, and property. In recent decades, the frequency and intensity of 

wildfires have increased significantly, primarily driven by climate change and human 

activities. According to the National Interagency Fire Center (NIFC) [1], the United States 

alone experienced over 58,000 wildfires in 2022, burning approximately 7.1 million acres of 

land. Wildfires contribute significantly to greenhouse gas emissions, releasing carbon 
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dioxide, methane, and other pollutants into the atmosphere, further exacerbating global 

warming. 

One of the primary natural triggers of wildfires is lightning [2] [3] [4], responsible for 

igniting nearly 60% of wildfires in remote and forested regions. Lightning strikes, 

particularly during dry thunderstorms, can quickly spark a fire in regions with high fuel loads 

and dry vegetation. The increased prevalence of lightning, especially in areas experiencing 

prolonged dry conditions, has become a critical concern for fire management agencies. 

Studies suggest climate change may increase lightning activity, with a potential 12% rise in 

lightning strikes per degree Celsius of warming. The increased prevalence of lightning, 

especially in regions experiencing prolonged dry conditions, has become a critical concern 

for fire management agencies. As climate change intensifies, the frequency and intensity of 

lightning storms are expected to rise. Climate change may contribute to a significant increase 

in lightning activity, with a potential 12% rise in lightning strikes per degree Celsius of 

warming. This trend is particularly alarming as it could lead to more frequent and severe 

wildfires, overwhelming firefighting resources, and more significant risks to ecosystems, 

human life, and property. The interplay between climate change and lightning activity 

underscores the urgency of developing advanced predictive models to anticipate better and 

mitigate the impacts of wildfires. 

Given the critical role of lightning and climate in wildfire ignition, there is a growing need 

for advanced predictive models to forecast wildfire events accurately. Deep learning 

techniques [5] [6] [7] offer a powerful solution to this challenge by analyzing historical 

lightning data to predict future lightning events with high accuracy, enabling proactive 

measures to prevent fire outbreaks. These models learn from patterns in lightning strikes and 

associated weather conditions, improving the precision of predictions. In addition to 

lightning, integrating regression models with climate data—such as temperature, humidity, 

and wind speed—enhances the prediction of wildfire-prone conditions. By identifying 

environmental thresholds that signal heightened risk, these models help prioritize areas for 

monitoring and preparedness. Coupled with satellite imagery, which provides real-time 

monitoring of fire-prone regions, these predictive models can detect early signs of wildfires, 

such as smoke or thermal anomalies, and trigger early warnings. Combining deep learning, 

climate data, and remote sensing, this integrated approach significantly strengthens wildfire 

prediction and mitigation efforts, reducing the overall impact on the environment and society. 
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This integrated approach, which uses deep learning classifiers, climate regression models, 

and satellite image processing, presents a robust wildfire prediction and mitigation 

framework. By leveraging historical data and advanced remote sensing technologies, this 

method can significantly improve early warning systems, enabling timely interventions 

that could reduce the devastating impact of wildfires on the environment and society. 

Literature Review  

A study [8] examining 905 wildfires triggered by lightning across the Continental United 

States (CONUS) from 2012 to 2015 explored the link between lightning strikes and wildfires 

that expanded to a minimum size of 4 km². The study employed fixed and fire radius 

methods, revealing that 81–88% of the wildfires had a lightning strike within 14 days before 

the wildfire was reported. Furthermore, 52–60% of the fires were recorded on the same day 

as the closest lightning strike. The fire radius method demonstrated the strongest spatial 

correlation, with a median distance of 0.83 km between the lightning strike and the wildfire's 

ignition point. Lightning-caused wildfires [9] [10] lead to significant losses globally, 

especially when convective storms trigger numerous ignitions. Researchers created a logistic 

regression generalized additive model to improve short- and long-term risk planning, aiming 

to predict lightning-caused ignitions in Victoria, Australia, which can exceed fire suppression 

capabilities. Fire risk indices [11] [12] play a crucial role in fire prevention, enabling fire 

managers to take timely and appropriate measures. In the Mediterranean region of Europe, 

most forest fires result from human activities, but lightning remains a significant ignition 

source in certain regions. To provide a more comprehensive understanding of fire causes, 

incorporating the probabilities of lightning and human-caused fires into fire risk indices is 

essential.  

This study [13] presents two methods for combining these probabilities across two areas of 

Madrid: Spain, where human-caused fires are prevalent, and Aragón, which is heavily 

affected by lightning-caused fires. The models were validated using independent fire ignition 

data, assessing performance through Receiver Operating Characteristic (ROC)-Area Under 

the Curve (AUC) and Mahalanobis Distance. Lightning-caused wildfires are responsible for 

the majority of incinerated areas in the western United States [14] [15] [16], yet predicting 

lightning remains a significant challenge in fire modeling and management. A data synthesis 

was conducted to understand this better, analyzing Lightning strikes that hit the ground, 

climate data, and fire incidents throughout the United States from 1992 to 2013. The study 

revealed notable geographic differences due to lightning-induced wildfires, with the interior 
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west US experiencing the highest proportion of lightning-attributed fires. The efficiency of 

lightning ignitions was greatest in western regions, where peak lightning frequency coincided 

with the lowest fuel moisture levels during mid to late summer. Although the total and dry 

lightning strikes exhibited a strong year-to-year correlation with lightning-caused fires, they 

were not effective in predicting the burned area at regional levels. The study also discovered 

that annual areas ravaged by lightning-caused fires in different regions had similar climate-

fire relationships to those caused by humans. This suggests that climatic factors, not lightning 

activity, are the main drivers of year-to-year variations in the area destroyed by lightning-

induced fires in most western US. 

Various studies [17] [18] [19] analyzed the seasonal patterns and trends of wildfires in 

Canada, focusing on lightning- and human-caused fires of at least 2 hectares in size over two 

time periods: 1959–2018 and 1981–2018. Nationally, human-induced fires surged in May, 

while lightning-induced fires mostly happened from June to August. However, the seasonal 

distribution of these fires varied significantly across different ecozones. The research also 

examined trends in the timing of fire seasons, the number of fires per year, and the number of 

days with fire starts, distinguishing between human- and lightning-caused fires. Results 

showed that the trends in the timing of fire seasons were generally stronger for human-caused 

fires, with variability among ecozones and time periods. From 1959 to 2018, there was a 

significant increase in days when lightning caused ignition in almost every ecozone and 

caused fires. In contrast, from 1981 to 2018, there was a notable decrease in human-caused 

fires and days with human ignitions in most ecozones. The Montane Cordillera and the 

Atlantic Maritime regions have the highest densities of fires caused by humans., while the 

Boreal Shield West has the highest density of lightning-caused fires. Additionally, the 

Montane Cordillera and Taiga Shield West showed significant increases in lightning-caused 

fires and days with lightning ignitions in both time periods analyzed. One of the main natural 

causes of wildfires and oxynitride is lightning, significantly impacting ecological systems and 

atmospheric chemistry [20] [21] [22].  

A study on South Asia [20], a critical global water distribution and climate change region, 

analyzed lightning trends using the longest available OTD/LIS observations dataset. The 

study found a notable increase in lightning density in South Asia, with a growth rate of 0.096 

flashes per square kilometer per year over the past two decades. The researchers employed 

multiple linear regression analysis on ten potential thermodynamic and microphysical factors 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 5 of 15 
 

to understand the factors driving this increase. The analysis revealed that the biggest source 

was surface thermal flux along the Indian subcontinent's occidental coast. 

Several studies highlight the significant role of lightning in wildfire ignition and its impact 

on fire management. In the US, lightning is linked to most burned areas, with a strong 

spatial and temporal correlation between lightning strikes and wildfire occurrences. 

Similar trends are observed in Australia and Canada, where lightning-caused fires show 

distinct seasonal patterns and increasing trends over time. Additionally, research in South 

Asia indicates a rising lightning density, influenced primarily by thermodynamic factors 

like surface latent heat flux, emphasizing the need to integrate lightning data into fire risk 

models globally. 

Methodology  

 

Figure 1: Study area: Canada 

 

Figure 2: Study area: India 
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We can observe the study areas chosen for this study in Figure 1 and Figure 2, corresponding 

to Canada and India, respectively. The methodology for predicting forest fires caused by 

lightning and their severity integrates advanced data collection, modeling, and analysis 

techniques, as depicted in Figure 3 below. The process involves collecting appropriate data, 

training three different models, and then integrating the result obtained by all three models 

into one. 

 

Figure 3: Flowchart of the proposed methodology 

Data Collection  

The initial step involves gathering comprehensive datasets, including historical climate data 

gathered from the National Oceanic and Atmospheric Administration (NOAA), lightning 

activity records from the World Wide Lightning Location Network (WWLLN), and satellite 

imagery from a sentinel hub belonging to the COPERNICUS program. These datasets 

provide essential information on environmental conditions, lightning strikes, and spatial 

patterns related to wildfire risks. 

Cross Attention Mechanism   

The Cross Attention Mechanism is pivotal in merging spatial and temporal features from 

diverse datasets, such as satellite imagery, climate data, and lightning occurrences. 

Selectively focusing on relevant regions or time frames effectively prioritizes significant 

information during the fusion process. This mechanism enhances the model's predictive 
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accuracy by allowing it to attend the critical aspects of each dataset while filtering out 

irrelevant or less impactful details. The selective attention ensures the model can capture 

complex relationships between different features, such as how climate patterns influence fire 

spread or how lightning strikes contribute to wildfire ignition. As a result, this fusion strategy 

strengthens the model's ability to generate more reliable predictions, particularly in dynamic 

environments like wildfire forecasting, where both spatial and temporal variations are crucial. 

Spatial Pyramid Pooling   

Spatial Pyramid Pooling (SPP) is employed to capture and integrate multi-scale spatial 

features, making it highly effective in enhancing the model's ability to analyze complex 

environmental data. By recognizing and analyzing features at various scales, SPP enables the 

model to account for fine-grained details and broader spatial patterns. This multi-scale feature 

extraction is particularly important in understanding landscape characteristics such as 

vegetation density, terrain elevation, and land cover, which are crucial in assessing wildfire 

risk. The flexibility of SPP allows the model to handle input data of different resolutions, 

ensuring that vital information from small and large areas is captured. This comprehensive 

spatial understanding strengthens the model's capacity to assess wildfire severity across 

diverse and heterogeneous landscapes, ultimately improving prediction accuracy. 

Multi-Grad Self Attention   

Multi-Grad Self Attention refines the feature extraction process by dynamically adjusting the 

model's focus to the most relevant features in the data. By simultaneously analyzing multiple 

gradients, this mechanism can prioritize important information while filtering out less critical 

details, improving the model's efficiency. It allows the model to weigh different features 

based on their significance to the task, enhancing the ability to capture complex patterns. This 

selective focus reduces noise and boosts learning efficiency, resulting in more precise and 

meaningful feature representation. In tasks like wildfire severity prediction, where 

understanding the interplay between various environmental factors is crucial, Multi-Grad Self 

Attention improves the model's accuracy by ensuring it concentrates on the most influential 

aspects of the data, such as the regions or climate conditions most indicative of fire risk. 

GRU Layers   

Gated Recurrent Unit (GRU) layers capture and model temporal dependencies within the 

data, making them essential for understanding how features evolve over time. These layers 
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are particularly well-suited for sequential data, allowing the model to retain important 

information from previous time steps while efficiently updating with new inputs. In wildfire 

prediction, GRU layers are crucial for modeling the dynamic evolution of environmental 

factors, such as changing weather conditions, fuel moisture levels, and lightning activity. By 

capturing these temporal patterns, GRU layers enable the model to anticipate how wildfire 

behavior might unfold, helping improve predictions of fire spread, intensity, and risk over 

time. This ability to track and predict temporal changes is vital for making accurate and 

timely decisions in wildfire management. 

Climate Predictor   

The Climate Predictor forecasts key climate variables such as temperature, humidity, and 

wind speed. Variations in humidity and precipitation patterns can affect lightning occurrence. 

Dry thunderstorms, which produce lightning but little rainfall, are particularly dangerous 

because they can ignite wildfires without the accompanying moisture to suppress them. It 

utilizes feature embeddings generated by the Adaptive UNet, which captures spatial and 

temporal patterns. The Adaptive UNet, combined with a regression model, is effective 

enough in modeling climate-related variables that influence wildfire risk. 

  ̂           

where  ̂  represents the predicted climate variables, and    and    are the spatial and 

temporal embeddings, respectively. 

SymbioticNet   

The SymbioticNet combines information from multiple sources to predict flash extent density 

on an image, enhancing the architecture’s predictive power. This module includes the feature 

transformer block, which processes refined features into more informative representations, 

cross model attention, which integrates outputs from various modules, and a dynamic 

weighted loss function that adjusts loss weights based on model performance. This helps us 

to derive the flash extent (density) for the region under discussion because it helps identify 

areas of intense lightning activity, which can be correlated with potential wildfire ignitions, 

especially in dry conditions. Together, these components improve the prediction of lightning 

probability and flash extent. 
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    ∑  

 

   

     ̂      

where    represents the dynamic weight for each loss component   , and    and  ̂  are the true 

and predicted values, respectively. 

 

Figure 4: Neural Architecture of the HyperFusionNet model 

HyperFusionNet   

The HyperFusionNet integrates outputs from all previous modules into a unified 

representation. This network considers all relevant spatial, temporal, and environmental 

information, leading to accurate and robust wildfire predictions. The HyperFusionNet has 6 

convolutional layers of filter sizes: 9x9, 7x7, 5x5, 3x3. The model has four fully connected 

layers with 4096, 2048, 2048, and 1000 hidden units. Hence, based on this, the final layer 

was also modeled to hold 1000 hidden units. The architecture is illustrated in a detailed scope 

in Figure 4. The feature integration performed by HyperFusionNet is critical for generating 

the joint embedding used in the wildfire severity prediction model. It incorporates the 

prediction obtained from the climate predictor model, which predicts the region's climate, 

aggregated flash density, and flash extent density, which the SymbioticNet model predicts. 

The processed features are input into the output layer to generate predictions on wildfire risk 

levels, burn severity, and other key metrics. These predictions support effective wildfire 

management and mitigation efforts. 

Results and Discussion  

This study evaluated the effectiveness of integrating deep learning techniques, climate data, 

and satellite imagery for wildfire prediction and mitigation. Our results demonstrate that the 
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combined approach significantly enhances the accuracy of wildfire forecasts. The deep 

learning classifiers effectively predicted lightning events, achieving an accuracy rate of 97%, 

a notable improvement over the traditional method. Regression models incorporating climate 

variables, such as temperature, humidity, and wind speed, successfully identified high-risk 

conditions with a predictive accuracy of 94%. The real-time analysis of satellite imagery 

enabled early detection of potential wildfire hotspots, providing critical early warnings that 

allowed for timely intervention. These findings highlight the potential of this integrated 

approach in addressing the challenges of wildfire management, offering a robust framework 

for improving early detection, prediction, and mitigation strategies. 

The figures below show the various results of this study. Figure 5 illustrates the aggregated 

flash density map for an hour based on various climatic and meteorological factors using the 

climate predictor model. Figure 6 provides us with the climate predictor model accuracy plot, 

and we can observe that it achieves a good accuracy of nearly 94%.  

 

Figure 5: Aggregated Flash extent density prediction 
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Figure 6: Accuracy graph of Climate Predictor 

 

Figure 7: Flash-extent density results of our lightning model 

Figure 7 shows current lightning activity and lightning probability in the next 60 minutes. 

This scene is over the Bay of Bengal region. While we could generate and plot next-hour 

lightning, this example will serve as a sanity check that the model correctly predicts high 

probabilities where we already have lightning. The good news is that higher probabilities 

generally correspond to areas of high flash rates. This means that our model learned about the 

short-term persistence of storms. Figures 8 and 9 provide us with the final results as predicted 

by the HyperFusionNet model, further enhanced by using the Joint Embedding module, 

which integrates all of the results obtained from all three models and provides the final 
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output, as seen below. Figure 8 provides the severity of wildfires that were ignited due to 

lightning in the Indian subcontinent, while Figure 9 illustrates the severity of wildfires that 

are caused by lightning in Canada. Table 1 shows the performance metrics used for 

evaluating the performance of our HyperFusionNet model compared with various Deep 

Learning algorithms. 

 

Figure 8: Lightning-induced wildfire severity in India 

 

 

Figure 9: Lightning-induced wildfire severity in Canada 
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 Table 1: Performance Comparison of our model against other Deep Learning algorithms 

 

Conclusion and Recommendation  

 In conclusion, this study introduces a robust, integrated framework for wildfire prediction 

due to lightning, combining the strengths of deep learning models, climate data analysis, and 

satellite imagery. The innovative use of Climate Predictor for lightning prediction, achieving 

an impressive 94% accuracy, alongside the HyperFusionNet model's 97% accuracy in 

identifying high-risk conditions, marks a substantial advancement over traditional predictive 

methods. Furthermore, SymbioticNet's ability to analyze satellite imagery in real-time for 

early signs of wildfires based on flash density adds a critical layer of early warning, enabling 

timely and effective intervention. The combined results highlight the accuracy and reliability 

of these models and demonstrate their practical application in real-world scenarios, as 

illustrated by the case studies of wildfire severity in the Indian subcontinent and Canada. 

Integrating these models into a cohesive system has proven effective in enhancing early 

detection, improving prediction accuracy, and ultimately mitigating the devastating impact of 

wildfires on ecosystems and communities. This study's findings emphasize the importance of 

adopting advanced technological solutions in wildfire management. By leveraging historical 

data, remote sensing, and deep learning, the approach offers a significant leap forward in our 

ability to predict and manage wildfires more effectively, contributing to better environmental 

stewardship and disaster preparedness. This integrated method sets a new standard for future 

research and wildfire prediction and prevention applications.  

 

 

 

 

Model Precision Recall AUC Kappa Co-efficient Accuracy 

CNN 92.29% 92.53% 0.9225 0.8967 91.59% 

DNN 91.27% 93.49% 0.9239 0.9147 92.11% 

LSTM 94.37% 94.67% 0.9476 0.9245 94.15% 

RNN 95.48% 95.19% 0.9523 0.9534 95.21% 

HyperFusionNet Model 97.42% 97.24% 0.9757 0.9756 97.35% 
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