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Abstract: Drought conditions often greatly impact the ecosystems and lands for agricultural 

purposes. This research endeavors to provide a systematic approach to predict the drought conditions 

of the land areas using the data from Famine Early Warning Systems Network Land Data 

Assimilation System and Soil Moisture Active Passive Mission which provide information about soil 

parameters. The former is used to obtain soil moisture values at 4 different ranges - 0 to 10, 10 to 40, 

40 to 100, 100 to 200 centimeters. The latter is used to obtain the Soil Moisture Indices at Surface and 

Root Level. This study utilized Landsat-8 images of the various landsites in Tamil Nadu from 2015 to 

2022. Once the images are collected, they are subjected to cloud masking and land region 

segmentation since the drought conditions of the land region are to be estimated. This is followed by 

extracting 11 bands from the satellite images. In addition to this, several thermal, vegetation and 

water indices are calculated to establish their relationship with soil moisture parameters. Finally, the 

above mentioned six soil moisture parameters are also collected for the same train sites to create a 

final dataset with six parameters as dependent variables to train Random Forest, AdaBoost and 

XGBoost model while the spectral bands and indices serve as independent features. The trained 

Random Forest model yielded an R-squared score of 0.78 outperforming the other models and was 

validated using K-fold cross validation. When a Landsat-8 image of the test site is provided for the 

trained model, it estimates the moisture values at four different levels and two Soil Moisture Indices at 

surface and root level. These Indices are then used to predict the drought levels at both surface and 

root zone while the 4 values at different depth ranges are used for analysis purposes. 
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Introduction  

Drought is a drastic condition that profoundly impacts society by disrupting socio-economic 

development through compromised food security and ecological imbalance in affected areas. 

Forecasting a drought at the earliest is very crucial for effective management and mitigation 

of their adverse effects. This study aims to assess drought conditions through the prediction 

of soil moisture indices at target location utilizing a robust approach which is an 

amalgamation of satellite imagery and advanced machine learning techniques. By providing 

high resolution data for analysis of temporal and spatial changes in soil moisture satellite 

imagery acts as a pivotal tool in this research. In addition to this satellites such as Soil 
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Moisture Active Passive (SMAP) yields us ground truth soil moisture data enabling the 

opportunity for precise drought assessments. Processing vast datasets, enhancement of the 

prediction accuracy, identify complex patterns and correlation between satellite derived 

variables and ground-truth observations are carried out through advanced machine learning 

techniques. Primarily this research aims at forecasting drought conditions accurately enabling 

proactive measures to mitigate their impact. In addition to this prediction of water content 

levels both at surface level and below the surface level through detailed soil moisture 

assessments. Heatmaps are also generated offering valuable insights into soil moisture 

dynamics across different depths, aiding in comprehensive drought monitoring and 

management strategies. This robust method provides real-time monitoring systems capable of 

updating drought forecasts based on the latest satellite observations of our target zone, 

leveraging the temporal resolution of satellite imagery to incorporate newer data for the 

newer assessments. 

 

Literature Review  

Climate change has boosted the unpredictability of droughts forecasted by historical 

meteorological data. Severe Drought Prediction model proposed by Haekyung Park et al 

(2019) tailored for short-term drought prediction, which integrates complementary data 

instead of conventional meteorological data. Four different categories of surface factors such 

as vegetation, topographic, water and thermal factors that can affect soil moisture were 

defined and 15 input variables from different categories were considered. A regression 

drought function was developed with Random Forest model providing a training performance 

of 0.91 R-squared score (R
2
). Anurag Dash et al (2022) utilized Soil Moisture Index (SMI) 

taken from SMAP satellite and 12 other variables taken from Landsat-8 images to create a 

dataset. Aforementioned dataset was utilized in training of Random Forest model that yielded 

a training performance of 94.1%. Considering the performance given by Random Forest in 

both the researches implies Random Forest model is better suited for this task. However, the 

aforementioned approaches are very susceptible to meteorological anomalies since it is based 

on historical precipitation data. The choice of relying on Landsat-8 images for input resulted 

in mediocre data affected by cloud cover. 

 

SMAP satellite mission was launched on January 31, 2015 providing global mapping of high-
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resolution soil moisture and freeze-thaw state with temporal resolution of 2 to 3 days utilizing 

an L-band radiometer. In April 2015, SMAP initiated a program to gather both radar and 

radiometer data simultaneously. The primary objective was to generate three distinct soil 

moisture products: a radiometer-only product offering spatial resolution of 40km, a combined 

radar/radiometer product with a resolution of 10km, and a radar-only product providing 

details at a resolution of 3km. Results from Steven K Chan et al (2016) indicated that the 

Dual Channel Algorithm had the lowest bias, which was virtually zero relative to other soil 

retrieval algorithms. In the case of the V-pol Single Channel Algorithm, the bias was only 

0.018 m³/m³ at core validation sites. Amy McNally et al (2017) employed the Famine Early 

Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), which is 

a customized version based on NASA's Land Information System (LIS). This system is 

regularly utilized to generate hydroclimate state estimates. The outputs from this initiative 

encompassed soil moisture percentiles and assessments of water availability. FLDAS 

facilitated the provision of both real-time operational estimates and high-quality research-

oriented data through the operational and research arms of FEWS NET, thereby enhancing 

the monitoring capabilities of evolving environmental conditions.  

The Random Forest algorithm, introduced by Leo Breiman in 2001, is a technique that 

utilizes a collection of decision trees, each trained on different subsets of the data and 

features. This approach, based on ensemble learning, has demonstrated notable improvements 

in classification accuracy by combining the predictions from multiple trees.  Large number of 

trees are generated finding the most popular class by voting. With use of Strong Law of 

Large Numbers, it is proved that trees always converge avoiding the problem of overfitting. 

Injecting the right of kind of randomness makes them accurate classifiers and regressors 

making it suitable for our problem statement. Tree boosting stands as a highly effective and 

extensively utilized machine learning approach. Tianqi Chen et al (2016) introduced 

XGBoost, a scalable end-to-end tree boosting system that delivers cutting-edge solutions 

across various domains. It incorporates a novel sparsity-aware algorithm and employs a 

theoretically grounded weighted quantile sketch technique to enable approximate learning. 

By utilizing the aforementioned techniques XGBoost is able to solve real world problems 

with a smaller number of resources. The conversion of weak learners that perform slightly 

better than random guessing into strong learners with high accuracy through effective 

combination of weak hypotheses was a big challenge giving rise to a dynamic allocation 

problem. Additionally, the need of deriving bounds on the net loss incurred by the allocation 
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algorithm posed a big challenge too. To address these problems Yaov Freund et al (1997) 

proposed AdaBoost algorithm that provides systematic approach to enhance weak learners. 

AdaBoost employs a weighted distribution over the training samples allowing algorithm to 

focus more on the instances that are misclassified by previous weak learners. This dynamic 

adjustment of weights effectively allocates more resources to harder to classify thereby 

improving the learning process over time. AdaBoost combines multiple weak learners by 

summing their weighted predictions rather than using a majority vote. The algorithm offers 

theoretical guarantees for the final hypothesis's performance by ensuring that the aggregation 

of weak hypotheses effectively minimizes the overall error. AdaBoost's flexibility and 

effective handling of multi-class problems allow it to often outperform other boosting 

algorithms and traditional classifiers such as Support Vector Machine (SVM) in terms of 

accuracy. 

Finding the right hyperparameters in machine learning is often resource intensive task. With 

the increasing trend in Deep Learning an optimal way of finding the better performing 

hyperparameter is the need of the hour. Takuya Akiba et al (2019) proposed Optuna, a next 

generate hyperparameter optimization framework. Optuna works by a deep learning 

philosophy named as define-by-run which provides user the privilege of not explicitly 

defining everything in advance about the optimization strategy. Optuna formulates the 

hyperparameters optimization as a task of minimizing/maximizing an objective function 

taking a set of hyperparameters as input and return the validation score. The objective 

function is gradually built through inter action with trial object with dynamic construction of 

search spaces of the trial object. Optuna establishes an efficient pruning algorithm by 

implementing a variant of Asynchronous Successive Halving (ASHA) in which early worker 

is allowed to asynchronously execute aggressive stopping based on provisional ranking of 

trials. The efficiency of Optuna framework becomes prominent when it became the key 

player in Preferred Networks' Faster Region-based Convolutional Neural Network (RCNN) 

models, High Performance Linpack (HPL), RocksDB and more. 

 

Methodology 

In this section, a step-by-step process on the Drought prediction is explained, as illustrated in 

Figure 1 for clarity and reference throughout the study. 
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Figure 1: Overall architecture of the study 

Data collection: The data source used in this study include SMAP- SMI at the root and 

surface levels from NASA/USDA-Enhanced SMAP retrievals. Another data involves the 

assessment of soil moistures through the FLDAS data, which provide measurements for 0-10 

cm to 100-200 cm below the soil surface. These measurements have been taken from 

different coordinates within Tamil Nadu, spanning from the years 2020 to 2023. Together 

with these soil moisture data, Landsat-8 images were downloaded for the same locations and 

dates as the SMAP and FLDAS values. Google Earth Engine (GEE) is used for accessing 

data and setting up the data such that the satellite images are precisely spatially and 

temporally aligned for consistency and accuracy between different datasets. 

Spectral Index calculation and final dataset preparation: Landsat-8 bands are used in 

deriving a number of key spectral indices for creating a comprehensive dataset with an 

objective for monitoring and prediction of drought conditions. Among the numerous spectral 

indices, one corresponds to the Normalized Difference Vegetation Index, NDVI. It reflects 

vegetation stress, and as such, it brings out areas of stressed vegetation, hence allowing for 

early detection and management of the impacts of droughts, and providing timeliness in 

intervention measures to avert devastating conditions on vegetation and farmlands. 

Soil Adjusted Vegetation Index (SAVI) that improves upon NDVI with an input variable for 

soil brightness; that becomes the factor that increases the precision of the outcome in the 

effects of drought on vegetation health. Enhanced Vegetation Index (EVI) overcomes the 

influence of the atmosphere in the determination of NDVI, making it more exact in the 

estimation of the degree of drought and health of vegetation. Normalized Difference Moisture 

Index (NDMI) uses the Near Infra-Red (NIR) together with the Short-Wave Infrared bands to 

assess the moisture content of vegetation—a component which is key in both drought 

monitoring and prediction. 
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Modified Normalized Difference Water Index (MNDWI) developed through green and 

shortwave infrared (SWIR) bands, giving information relating to changes in water availability 

in the period during drought. Modified Soil Adjusted Vegetation Index (MSAVI)—improved 

sensitivity to the dynamism of vegetation health status—assists in locating drought patterns 

and impacts. Bands considered in this study include Red, Blue, Green, NIR, SWIR1, SWIR2, 

TIRS1, and TIRS2. 

The information on variation in plant water content and vegetation stress is described by the 

NIR and the SWIR bands, while the indirect description of soil moisture dynamics is given 

by the TIRS bands and the thermal radiation. Also, NDWI use near real-time available 

information to estimate water availability, and, therefore, further shed light on the effect of 

drought on vegetation. All the bands were used, along with the derived spectral indices, as 

individual features in the final dataset. All formulas for all spectral indices are given in the 

Table 1. 

Table 1. List of spectral indices along with their formulas 

Spectral Indices Formula 

NDVI        ed

       ed
 

SAVI  ed     een

  ed     een            
 

EVI                    

                                    
 

NDMI            

           
 

MSAVI           √                         

 
 

MSI      

   
 

NDWI            

           
 

MNDWI              

             
 

 

The culminating dataset incorporates indicators for soil moisture at both the surface level and 

root zone, as well as soil moisture measurements at various depth intervals: 0-10 cm, 10-40 

cm, 40-100 cm, and 100-200 cm. 
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Feature Importance: Spectral indices and band reflectance values, extracted from remote 

sensing data, are essential for precise estimation of soil moisture content. In this paper, in 

order to estimate the efficacy, correlations of the spectral indices and bands with the soil 

moisture level and soil moisture index is calculated. The analysis outcomes demonstrated a 

strong affirmative relationship between indices sensitive to water content and the measured 

moisture levels in the soil. In this respect, it was the strongest with MNDWI, followed by 

NDWI: r = 0.354701 and r = 0.326438, respectively. This is supported by many previous 

studies indicating that these indices are sensitive to soil water content. Interestingly, the 

NDMI also indicated a positive correlation, r = 0.256321, which may suggest potential 

interactions between urban landscapes and soil moisture patterns. Vegetation-based metrics, 

notably NDVI, showed a positive link to soil water content levels. At the same time, SAVI 

and EVI were strongly negatively correlated, with r = -0.199466 and r = -0.232807 

respectively. Specifically, analysis of the individual spectral bands indicates that the coastal 

aerosol band, B1 (0.43-  4  μm , has the exhibited weak to mode ate negative co  elations 

with soil moisture with r = -0.045368. This is followed by the blue band, B2 (0.45-   1 μm , 

which has a correlation coefficient of r = 0.176482. This probably means that short 

wavelengths of the visible spectrum are more sensitive to changes in soil moisture. The 

strongest negative correlation is given by the thermal infrared band, B11 (11.50-12  1 μm , 

which has an r = -0.552163. This disparity thus underlines the importance of wavelength 

selection in moisture assessment protocols, further underscoring, in general, complex 

interactions between soil moisture and electromagnetic radiation across different parts of the 

spectrum. 

Model Development and Evaluation: Three Ensemble Learning regression models were 

used in training the dataset: Random Forest Regressor, AdaBoost Regressor and XGBoost 

Regressor. These models have strong mechanisms for dealing with large datasets because of 

the use of ensembles of decision trees, which are efficient ways of capturing complex 

patterns and greatly improving predictive accuracy. In this analysis, all hyperparameter 

tuning for the models was done using Optuna. Their performance is evaluated using standard 

metrics like R-squared and Root Mean Squared Error. The equations for RMSE and R
2 

score 

are defined as follows. 

The R² score is given by: 

 2    
∑       ̂ 

  
   

∑      ̅   
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Whereas RMSE is given by, 

      √
 

 
∑      ̂  
 

   

 

The following metrics have provided quantitative measures of how good the models fit the 

data and predict. 

Drought prediction: The measurement of the level of soil moisture at four depths helps to 

identify the availability of water and these measurements helps to assess the impact on 

agriculture productivity and health. The results predicted for the Soil Moisture Index and soil 

moisture levels over the area will be visualized, where the predicted values are attached to 

each pixel, hence, creating a drought map. This map categorizes the intensity of the drought 

at the surface and root levels and offers more detailed information about the drought impacts. 

This mapping will be very helpful in assessing and managing droughts with far more 

competencies at different depths and spatially. The SMI values are categorized as: 0 to 0.2, 

severe drought; 0.2 to 0.4, high drought risk; 0.4 to 0.8, low to very low drought risk; and 

from 0.8 to 1, minimal or no drought risk. This categorization helps in estimating the level 

and possibilities of drought over different regions. 

 

Results and Discussion 

The final dataset was approximately 13,234 data points, which were then randomly split into 

a training dataset and a testing dataset in the ratio 80:20. Random Forest, AdaBoost, and 

XGBoost were developed and calibrated using the prepared training dataset. The Hyper-

Parameter tuning process using Optuna was then used to get the best performance. This 

process fine-tuned the models to improve their predictive accuracy on test data.  

It tuned a comprehensive list of hyperparameters, launching 1000 trials to run through many 

different combinations in search of the best models. The process involved testing 

systematically all sets of different parameters in search of the best possible performance. 

Results for these trials for all of the models are summarized in Table 2, Table 3 and Table 4, 

including all tested hyperparameters, their respective performances, and the best parameters 

identified by Optuna. All of this tuning was a very integral part in the refinement of the 

model for better accuracy and efficiency. 

  



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 9 of 14 
 

Table 2. List of best Hyperparameter for Random Forest model obtained from Optuna 

Hyperparameters Range for each 

Hyperparameter 

Best Value obtained 

n_estimators 10 to 1000 469 

max_depth 2 to 200 11 

min_samples_split 2 to 50 5 

min_samples_leaf 1 to 50 1 

max_features ['auto', 'sqrt', 'log2', None] sqrt 

bootstrap [True, False] True 

 

 

Table 3. List of best Hyperparameter for XGBoost model obtained from Optuna 

Hyperparameters Range for each 

Hyperparameter 

Best Value obtained 

lambda 1e-8  to 1.0 0.34888107520657696 

alpha 1e-8 to 1.0 9.487580450505716e-06 

max_depth 3 to 12 12 

eta 1e-4 to 1.0 0.08840764127174541 

gamma 1e-8  to 1.0 1.3437743943203425e-08 

grow_policy ['depthwise', 'lossguide'] depthwise 

subsample 0.5 to 1.0 0.6595273699333676 

colsample_bytree 0.5 to 1.0 0.7941379176780416 

min_child_weight 1e-8  to 1.0 2.1119948079914213e-07 
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Table 4. List of best Hyperparameter for AdaBoost model obtained from Optuna 

Hyperparameters Range for each 

Hyperparameter 

Best Value obtained 

max_depth 2 to 200 24 

min_samples_split 2 to 50 25 

min_samples_leaf 1 to 50 13 

n_estimators 50 to 200 152 

learning_rate 0.01 to 1.0 0.37808498449931166 

loss ['linear', 'square', 

'exponential'] 

exponential 

 

Model performance was assessed using two metrics: R
2
 score and RMSE. To make this more 

robust in terms of evaluation, the performance assessment was made using K-fold cross-

validation. The data is divided into 5 subsets, and models are iteratively trained and tested on 

these subsets. This will ensure robust model evaluation, avoiding overfitting risks, and gives 

the full view of the predictive capabilities of each model considered. Table 5 present, R
2
 

score and RMSE values for the Random Forest, AdaBoost and XGBoost model, respectively. 

It provides a detailed assessment of their accuracy and consistency across various data splits. 

Table 5. Performance of each Models 

Model R
2
 score RMSE 

Random Forest 0.78295 0.0384 

XGBoost 0.7619 0.0397 

AdaBoost 0.7343 0.0408 

 

The Random Forest model has outperformed the AdaBoost and XGBoost model. Therefore, 

Random Forest has been selected for making predictions. The places selected for study are 

Puzhal and Theri Kaadu. The test site chosen near Puzhal Lake - land beside one of the 

largest lakes in Tamil Nadu—was opted for, while Theri Kaadu, situated in Southeast Tamil 

Nadu, represents a red soil desert condition zone. These sites are chosen to assess the 

accuracy of the model in two contrasting different environments. Landsat-8 images from 

these two locations were downloaded from GEE. The test images are subjected to cloud 

masking and land segmentation. Cloud masking is done with the help of Quality Assurance 

Band (QA_Band). Land segmentation is carried out with the view of masking out water 
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bodies from the image. Then the resultant image is used as input to the Random Forest 

model, and outputs were derived. Figure 2 represents the output for Puzhal, while Figure 3 

represents the output for Theri Kaadu. 

Figure 2. Soil moisture levels and SMI values of Puzhal. 

Figure 3. Soil moisture levels and SMI values of Theri Kaadu. 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 12 of 14 
 

The results show the soil moisture levels and soil moisture index for two test sites. Green 

means high presence, red means low presence, and white indicates water or no data. From the 

Figure 2, it is obvious that the land adjacent to Puzhal lake contains high soil moisture levels, 

where the mean soil moisture indices are 0.42 at the surface zone and 0.57 at the root zone. 

Thus, this site is described as having a "low to very low risk of drought". Soil moisture levels 

at each depth also indicate higher water availability throughout the profile. 

In sharp contrast, Figure 3 shows that, at Theri Kaadu, the soil moisture levels are very low. 

The mean SMI values here range from 0.131 at the surface zone to 0.29 at the root zone. At 

the surface level, this places it at "severe drought," while at root level, it is "high drought 

risk". Soil moisture at individual depths indicates reduced water availability along the profile. 

Across different sites, this analysis brings into relief the variability of the drought conditions 

that were modelled, showing how the water availability at Theri Kaadu was different from 

that at Puzhal Lake, and how their respective drought severities differed. 

 

Conclusion and Recommendation: 

The result of this research confirms the effectiveness of integrating satellite-derived data with 

machine learning techniques in drought prediction and monitoring. In this study, SMAP and 

FLDAS soil moisture data were used together with Landsat-8 spectral bands and indices to 

develop a robust Random Forest model with an accuracy of 78% able to suitably assess 

drought conditions. The model was tested against different scenarios, and its efficiency has 

been proved by rigorous cross-validation. The case studies of Puzhal and Theri Kaadu 

represent an important part of model capacity, providing an efficient way of knowing the 

varying risks of drought. This kind of granular assessment on a surface and root-zone level 

gives very useful information on agricultural planning and water resource management. This 

approach is very useful because scalable and adaptive solutions for drought monitoring are 

essential, particularly in regions with limited ground-based data. The methodology combines 

satellite data, which is easily available, with machine learning algorithms to come out with a 

promising tool that will help in preparedness and mitigation efforts concerning droughts. 

Future research may consider geographical scale enlargement and the addition of more 

environment variables. Making the model more responsive to rapidly changing conditions 

can be achieved by integrating real-time data streams. Deep learning techniques can be 

explored for applicability, and test the performance of the model in different climatic zones to 

set up a more accurate and of wider applicability of the drought prediction. Hence this 
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research study describes the potential of advanced data analytics and artificial intelligence in 

remote sensing, enabling any entity to enhance its predictive capabilities and conduct 

accurate environmental monitoring. These are, therefore, techniques that demonstrate how 

technology might help shift insight and management of our ecosystems by offering a method 

for the right analysis and prediction of data. 
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