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Abstract: Mangrove forests in the per-humid insular Southeast Asia region have undergone 

significant changes resulting from anthropogenic and natural disturbances over the past four 

decades. Accurate and near real-time mapping of mangrove extent at the regional level plays an 

important role in conservation efforts. This study assesses the use of Google’s Dynamic World (DW) 

derivatives in regional mangrove mapping using Google Earth Engine (GEE). Dynamic World 

provides near real-time land cover data with probability layers for various land cover types. We 

developed three Random Forest (RF) models for mangrove mapping: (1) a model trained using 25960 

points with Sentinel-2 imagery, (2) a model trained by combining Sentinel-2 bands with DW 

probability layers using the same 25960 points, and (3) a model trained over Sentinel-2 bands and 

DW probability layers with only a few hundred points for monthly or seasonal mapping. The first 

model achieved an overall accuracy of 96.73%, while the second one achieved 97.72%. Our results 

show that high-quality and extensive training data are imperative to the performance of RF-based 

mangrove models, and the addition of DW probability layers slightly improved the model accuracy. 

However, the model trained solely using DW features would still have limitations at the regional 

level.  
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Introduction  

Mangrove forests are one of the most biologically diverse and productive ecosystems on 

earth which not only provide costal protection and plays a pivotal role in combating global 

warming due to their efficient carbon sequestration and storage (Field et al., 1998; Alongi 

et al., 2012). These forests can store five times more carbon in the below-ground 

compared to other tropical forest ecosystems (Donato et al., 2011). Southeast Asia, which 

includes both mainland and insular regions fosters the highest mangrove species diversity 

and encompasses over one-third of the world's mangrove forests (Spalding, 2010; Giri et 

al., 2010).  
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Despite their value and importance, mangrove forests in the per-humid insular Southeast 

Asia region have undergone significant changes resulting from anthropogenic and natural 

disturbances over the past four decades. Deforestation in insular Southeast Asia has 

continued at a high rate since the year 2000 because of the significant land use land cover 

(LULC) changes (Miettinen et al., 2011). Mangrove forests in Southeast Asia are highly 

susceptible to deforestation and the primary drivers are aquaculture, rice cultivation, and 

expansion of oil palm and other plantations. Significant mangrove deforestation occurred 

in Indonesia and Malaysia due to their extensive expansion of oil palm plantations, to 

keep their status as the top producers of the palm oil. These are further encouraged by the 

governments for economic development (Richards et al., 2016). Thus, sustainable land 

use planning and policy implementation are crucial to conserve the mangrove forests in 

the region and the near real-time mangrove maps play a vital role in addressing the current 

problem at hand. 

Traditional land cover and mangrove mapping methods have extensively relied on various 

satellite data and human expertise. In recent years, cloud-based platforms like Google 

Earth Engine (GEE) have revolutionized earth observation by providing powerful tools 

for large-scale environmental monitoring (Gorelick et al., 2017). As a result of 

advancement in open datasets and cloud computing, many research groups published the 

global LULC datasets. Nonetheless, a study (Venter et al., 2022) has shown that the 

worldwide significant discrepancies lie in these three published LULC datasets in 2020 

including ESA World Cover (Zanaga et al., 2021), ESRI’s Land Cover (Karra et al., 

2021), and Google Dynamic World (DW) (Brown et al., 2022). 

Among the recent global LULC datasets, DW provides near real-time 10-m resolution 

land cover based on Sentinal-2 Top-of-Atmosphere imagery generated using globally 

trained deep learning model. DW has 8 land cover classes and produce per-class 

probability layers for various land cover types which can integrate to the different scale 

mapping (Brown et al., 2022). Near real-time data from DW has the potential to improve 

the accuracy of land cover classes across the regions and uncertainty estimation (Singh et 

al., 2024; Ahmed et al., 2024). Moreover, its effectiveness in mangrove mapping in 

Southeast Asia region has not been thoroughly evaluated.  

In this study, we aim to assess the performance of Dynamic World probability layers in 

regional mangrove mapping using GEE. We developed three Random Forest (RF) models 

for mangrove mapping: (1) a model trained using 25960 points with Sentinel-2 imagery, 

(2) a model trained by combining Sentinel-2 bands with DW probability layers using the 
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same 25960 points, and (3) a model trained over Sentinel-2 bands and DW probability 

layers with only a few hundred points for monthly or seasonal mapping. After that, we 

compared three Random Forest (RF) models to evaluate the limitation and advancement 

of DW integrated regional mangrove mapping models. 

   

   

Figure 1: Location of the study area and 2020 Annual False Color Composite of 10 m 

Sentinel-2 image (Shortwave Infrared, Near Infrared, and Red bands). 

 

Study Area 

The study area includes Peninsular Malaysia, Singapore and Indonesia’s Sumatra which 

are parts of the insular Southeast Aisa. The mangrove area in the region encompasses 

extensive coastlines and is home to significant biodiversity. Western coastal areas of 

Peninsula Malaysia like Matang Mangrove Forest Reserve, covers over more than 

40,000ha and have a vast number of species (Ibharim et al., 2015). Sumatra is the second 

largest Indonesia island covered by mangrove areas and have one of the most biodiverse 

and expansive mangrove forests in Southeast Asia, especially along the eastern coastline 

(Basyuni et al., 2022). The reason for selecting this region as a study area is because it 

stands for a significant amount of mangrove forest in insular Southeast Asia region that 

faces mangrove deforestation and degradation due to the rapid changes in 

land use land cover.  

 

Methodology 

We used Sentinel-2 Level-2A orthorectified atmospherically corrected surface reflectance 

imagery for our mangrove mapping models. First, we created an annual cloud-free 
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Sentinel-2 composite for the year 2020 with red, green, blue, near infrared (nir), 

shortwave infrared 1 (swir1), shortwave infrared 2 (swir2), red edge 1 (re1), red edge 2 

(re2), and red edge 3 (re3) bands to train our mangrove models. The reference points are 

collected by visual interpretation using Sentinel-2 and Planet images of 2020 with the 

2015 mangrove layer from our existing land cover map. There are a total of 25960 

reference points including 12258 mangrove and 13702 non-mangrove labels (Fig. 2).  

   

Figure 2: Reference points of (a) mangrove and (b) non-mangrove  

We developed three Random Forest (RF) models for mangrove mapping: (1) a model 

trained using 25960 points with Sentinel-2 imagery, (2) a model trained by combining 

Sentinel-2 bands with DW probability layers using the same 25960 points, and (3) a model 

trained over Sentinel-2 bands and DW probability layers with only a few hundred points. 

The objective of the first two models is to study whether adding DW probability layers as 

the extra features might be able improve our existing regional model with extensive 

reference dataset or not. The motivation of the third model is to evaluate how DW 

probability layers are feasible and dependable for near real-time or seasonal mangrove 

mapping purposes with only a few collected points.  

In addition, different normalized difference (ND) of Sentinel-2 6 bands were calculated 

and there are more common names for some bands combination such as and Normalized 

Difference Vegetation Index (NDVI, Rouse et al., 1974) Normalized Difference Water 

Index (NDWI, McFeeters, 1996), Normalized Burn Ratio (NBR, Key and Benson, 1999), 

and Normalized Difference Snow Index (NDSI, Salomonson and Appel, 2004). Further, 

we also included the Enhanced Vegetation Index (EVI, Jiang et al., 2008) and the Soil-

(a)  (b) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/normalized-difference-vegetation-index
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/normalized-difference-vegetation-index
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0435
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0360
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0300
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0475
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vegetation-index
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0275
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adjusted vegetation index (SAVI, Huete, 1988) and Index-based Built-Up Index (IBI, Xu, 

2008), the terrain indices derived from SRTM (Farr et al., 2007), the Tasseled Cap 

transformation derivatives (Crist and Cicone, 1984),  and other ancillary data like distance 

to coast calculated from Open Street Map (OSM, 2017). Detailed information of features 

used to train the models is described detailed in Table 2.  

The reference dataset is divided into 70% for training and 30% for testing of the model. 

Model 1 was trained using 45 features and model 2 employed 54 features. After the initial 

training of each model, the feature importance of the Random Forest model was assessed, 

and the top 20 most important features were selected for the final model training. Model 3 

utilized only 18 features derived from Sentinel-2 bands and DW probability layers and 

trained using 188 points of mangrove and 234 points of non-mangrove labels. For the 

accuracy assessment, we performed model validation using 30% of the reference data and 

visual comparison with Global Mangrove Watch (GMW, Bunting et al., 2022) data in 

2020.  

Results  

The proposed 3 mangrove models were implemented leveraging built-in RF algorithm in 

GEE. Model 1 achieved the overall accuracy of 96.73% while model 2 slightly improved 

the overall accuracy by 97.72%. Model 3 resulted the overall accuracy of 79.49% with 

87.25% precision and 71.77% recall. The detailed metrics are shown in Table 1 and the 

accuracy assessment was done only with 30% of testing data. Therefore, the models’ 

accuracy might be influenced by the bias from the dataset and spatial distribution of the 

reference data. 

Table 1: Accuracy assessment of 3 mangrove models  

Model Precision (%) Recall (%) Overall Accuracy (%) 

Model 1 96.80 96.29 96.73 

Model 2 97.80 97.37 97.72 

Model 3 87.25 71.77 79.49 

 

Figure 3 presents the results of three different mangrove models with sentinel-2 false color 

composite and column (b), (c), and (d) describes the probability layers of the models. White 

color in the results represents the lowest probability 0-10% and purple color represents the 

highest probability 90-100%. We also compared our results with the 2020 GMW’s mangrove 

extent layer. The first three rows display the outputs for Matang, Klang islands, and Sungai 

https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0265
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0590
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0590
https://www.sciencedirect.com/science/article/pii/S0303243419306270#bib0085
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Pulai mangrove forest reserves in Malaysia and all models effectively detect the mangrove 

forest areas within these regions when we compared with GMW layer. The last three rows 

reveal the results of mangrove forests detected in North Sumatra, Riau, and South Sumatra in 

Indonesia. The models performed well in most mangrove areas, though Model 3 showed 

some misclassification, identifying plantation areas as mangrove in certain areas. 

 

 

 

Figure 3: Results of the different mangrove models in 2020 and comparison with GMW 

2020 data. (a) Sentinel-2 False Color Composite, (b) Probability layer of Model 1, (c) 

Probability layer of Model 2, (d) Probability layer of Model 3, and (e) 2020 GMW layer 

(a) Sentinel-2 (b) Model 1 (c) Model 2 (d) Model 3 (e) GMW 
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Conclusion  

In conclusion, this study shows that Google’s DW features may improve regional 

mangrove mapping. Though integrating DW probability layers as extra features in our 

model slightly improved the accuracy, the increase from 96.73% to 97.72% between 

Model 1 and Model 2 may not be statistically significant. While DW’s probability 

derivatives slightly enhance the model performance, they are not sufficient to train their 

own model for the near real-time purpose and cloud coverage remains an issue for the 

tropical region. Further modification of the model and independent validation for accuracy 

assessment would be necessary to fully harness DW features to develop reliable mangrove 

mapping model. 

 

Table 2: List of features used to train the three mangrove models 

Model 1 Model 2 Model 3 

red 

green 

blue 

nir 

swir1 

swir2 

re1 

re2 

re3 

ND_blue_green 

ND_blue_red 

ND_blue_nir 

ND_blue_swir1 

ND_blue_swir2 

ND_green_red 

ND_green_nir 

ND_green_swir1 

ND_green_swir2 

ND_red_swir1 

ND_red_swir2 

ND_nir_red 

ND_nir_swir1 

ND_nir_swir2 

ND_swir1_swir2 

EVI 

SAVI 

red 

green 

blue 

nir 

swir1 

swir2 

re1 

re2 

re3 

ND_blue_green 

ND_blue_red 

ND_blue_nir 

ND_blue_swir1 

ND_blue_swir2 

ND_green_red 

ND_green_nir 

ND_green_swir1 

ND_green_swir2 

ND_red_swir1 

ND_red_swir2 

ND_nir_red 

ND_nir_swir1 

ND_nir_swir2 

ND_swir1_swir2 

EVI 

SAVI 

red 

green 

blue 

nir 

swir1 

swir2 

re1 

re2 

re3 

bare 

built 

crops 

grass 

flooded_vegetation 

shrub_and_scrub 

snow_and_ice 

trees 

water 
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IBI 

brightness 

greenness 

wetness 

fourth 

fifth 

sixth 

tcAngleBG 

tcAngleGW 

tcAngleBW 

tcDistanceBG 

tcDistanceGW 

tcDistanceBW 

distCoast 

elevation 

slope 

aspect 

eastness 

nortness 

 

IBI 

brightness 

greenness 

wetness 

fourth 

fifth 

sixth 

tcAngleBG 

tcAngleGW 

tcAngleBW 

tcDistanceBG 

tcDistanceGW 

tcDistanceBW 

distCoast 

elevation 

slope 

aspect 

eastness 

nortness 

bare 

built 

crops 

grass 

flooded_vegetation 

shrub_and_scrub 

snow_and_ice 

trees 

water 
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