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Abstract: In the field of computer vision, accurate depth estimation is crucial for various applications 
such as 3D reconstruction, object recognition, and autonomous navigation. This paper presents an 
optimized approach to stereo matching that integrates Cross-Based Matching and image segmentation. 
In this research, a classified image is generated by pixel classification to enhance the precision of 
disparity maps. This method leverages Semi-Global Matching (SGM) for its robustness and reliability 
while introducing a unique constraint based on pixel classification. This constraint incorporates image 
segmentation to inform the Cross-based matching process, setting this approach apart from traditional 
SGM and Cross-based matching methods. Classifying pixels into distinct categories and using these 
classifications to restrict the matching area significantly reduces ambiguities and improves consistency 
in disparity estimation. The experiment used different numbers of objects in image segmentation to 
perform several tests. The results of the proposed method versus Cross-based matching were evaluated 
using five metrics: difference map, error evaluation, error rate, optimized disparity, and error 
distribution map.  Experimental results demonstrate that the proposed method indeed reduces the error 
in Cross-based matching, particularly distributed around the borders of the different objects. However, 
some new errors arise because of insufficient quality of classification. This integration of Cross-based 
with image classification constraints provides an ideal path in stereo matching techniques, paving the 
way for more accurate and reliable depth estimation in various computer vision applications. Yet, how 
to best employ segmentation information and quality for improving stereo matching remains not only 
interesting but also challenging. 
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Introduction 
In computer vision, accurate depth estimation plays a crucial role in various applications such 

as 3D reconstruction, object recognition, and autonomous navigation. Among the techniques 

used for depth estimation, stereo matching is one of the most fundamental and widely 

researched approaches. Stereo matching involves generating a disparity map by comparing 

pixel correspondences between two images taken from slightly different viewpoints. This 

disparity map is then used to infer the depth of the information in the scene. However, 

traditional stereo-matching methods often struggle with regions of low texture, occlusions, and 

repetitive patterns, leading to inaccurate depth estimates in such areas. 

Cross-based matching is a technique that has shown promise in addressing some of these 

challenges by employing local cross-shaped support regions to improve pixel correspondence. 
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Despite its effectiveness, Cross-based matching can still face difficulties when encountering 

complex image regions, particularly at object boundaries where matching ambiguities are more 

pronounced. To improve the precision of disparity maps and mitigate these limitations, recent 

research has explored the integration of additional information, such as pixel classification and 

image segmentation, into the stereo-matching process. 

This paper proposes an optimized stereo-matching approach that combines Cross-Based 

Matching with image segmentation, leveraging pixel classification to inform and constrain the 

matching process. The method also integrates Semi-Global Matching (SGM) for its robustness 

in handling challenging regions while maintaining computational efficiency. By classifying 

pixels into distinct categories, such as edges, textures, and flat regions, and introducing these 

classifications as constraints in the Cross-based matching process, we aim to reduce 

ambiguities and improve consistency in disparity estimation, particularly around object borders. 

The core innovation of this research lies in the use of pixel classification to guide Cross-based 

Matching. This novel constraint-based approach restricts the matching search space for each 

pixel class, thereby enhancing the accuracy of disparity estimation in complex image regions. 

For example, edge pixels are constrained to ensure strong spatial consistency along object 

boundaries, while texture and flat region pixels are matched with constraints that reduce errors 

typically encountered in traditional methods. The integration of segmentation-based constraints 

into stereo matching sets our approach apart from traditional Cross-based matching and SGM 

methods. 

While the proposed method shows promise in improving disparity map accuracy, particularly 

at object boundaries, challenges remain. One notable challenge is the quality of the image 

segmentation itself. Poor segmentation can introduce new errors, especially in regions where 

pixels are misclassified. Despite these challenges, this research provides a valuable step 

forward in stereo matching techniques by integrating Cross-Based Matching with image 

segmentation constraints, offering a more reliable and accurate solution for depth estimation in 

a wide range of computer vision applications. 

Furthermore, the application of this method to photogrammetric point clouds is explored in this 

study. Photogrammetric point clouds, generated from image-based techniques, often suffer 

from several challenges: they can be unstructured, lack important attribute information, and 

involve massive datasets that are computationally demanding to manage. By enriching point 

clouds with attribute data derived from stereo matching and pixel classification, this research 

seeks to address these limitations, transforming point cloud data into more structured and 

meaningful point cloud information. 
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Thus, this paper not only aims to enhance stereo matching by introducing constraints based on 

pixel classification but also contributes to the field of photogrammetry by improving the 

information content of point clouds. Through a series of experiments, the effectiveness of the 

proposed method is evaluated using several metrics, including pixel accuracy, difference maps, 

and error distribution analysis, demonstrating its potential to provide more accurate and reliable 

depth estimation. 

Literature Review 
a.   Stereo Matching 

Stereo matching is a crucial technique in computer vision used to estimate depth from two or 

more images taken from slightly different viewpoints. The key objective is to match 

corresponding pixels between the stereo images to calculate disparity, which provides depth 

information. 

Early methods, such as Sum of Absolute Differences (SAD) (Hamzah, R. A., Abd Rahim, R., 

& Noh, Z. M., 2010) and normalized cross-correlation (NCC) (Yoo & Han, 2009), were pixel-

based or block-based techniques. These methods, while simple, often struggled with occlusions, 

textureless regions, and illumination differences, particularly around object boundaries. 

Global stereo-matching methods, like those using Graph Cuts (Hong & Chen, 2004) or Belief 

Propagation (Yang et al., 2006), improved accuracy by considering relationships across the 

entire image, though at a high computational cost. SGM, introduced by Hirschmüller (2005), 

struck a balance by offering better accuracy than local methods and more efficiency than fully 

global methods. SGM became widely adopted for its effectiveness in practical applications. 

b.   Semi-Global Matching 

SGM is a widely used algorithm in computer vision and image processing for stereo matching, 

particularly in depth estimation from stereo images (Hirschmuller, 2005). It aims to compute 

corresponding points in two images taken from different viewpoints, which helps reconstruct 

a 3D scene. The basic idea is to find correspondences between pixels in stereo images by 

minimizing a cost function. This cost function evaluates the similarity between pixels or image 

patches in the left and right images. SGM differs from traditional local stereo matching 

algorithms by considering the matching cost of individual pixels and incorporating information 

from neighboring pixels and multiple scanline directions. In SGM, the cost aggregation process 

involves computing a cost volume that contains matching costs for all possible disparities 

(horizontal offsets) for each pixel in the based image. This cost volume is then efficiently 

minimized using dynamic programming techniques. By considering costs along multiple paths, 
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including horizontal, vertical, and diagonal directions, SGM produces more accurate and robust 

disparity maps than purely local methods. 

c.   Cross-based matching 

SGM is highly sensitive to the penalty parameter, and the results before and after adding the 

penalty parameter are significantly different at the edge of the object. Cross-based matching 

attempts to address some of these issues by using local cross-shaped support regions around 

each pixel. This algorithm considers each pixel when determining the summed range of 

matching cost values to establish shape-adaptive support regions of different sizes based on the 

color similarity and connectivity between its neighboring pixels (Zhang et al., 2009). The cross 

shape allows cross-based matching to maintain local consistency in matching, particularly in 

areas of the image where traditional methods would introduce noise. Cross-based matching can 

provide a set of initial disparity maps before performing SGM. Then use it to generate the 

confidence map which would be used to automated decide the penalty parameters for vary 

dataset. So that the subsequent SGM can smooth the image edges. It can reduce the sensitivity 

of the penalty parameter and correct the non-smoothness and parallax discontinuity (Ting & 

Jaw, 2017). 

d.   Point Clouds Classification 

Currently, point cloud classification is typically performed after the point cloud is generated. 

Yang et al. (2022) proposed two deep learning models, Geometric relation-based convolution 

(GRC) and relational attention interpolation (RAI), for point cloud classification and 

segmentation. Similarly, Pessoa et al. (2019) introduced a pixel-supervised classification 

method based on decision trees, which uses the mean and standard deviation of class attributes 

extracted from training samples to define the decision tree, applying it to data validation and 

accuracy assessment. This research trend means that large amounts of unprocessed 3D data 

must be handled simultaneously during this process. This can lead to challenges in data 

processing. The main limitation of this approach is that the unprocessed 3D data may contain 

significant noise, missing values, or unnecessary details, which can negatively impact the 

performance of the classification models. If effective preprocessing of the optical images used 

to generate the point cloud can be performed before classification, it would help improve the 

accuracy and efficiency of the classification models, ensuring that they focus only on the data 

features most relevant to the task. 

e.   Main Goal 

One solution to the limitations of cross-based matching is to incorporate additional information 

through pixel classification and image segmentation. By classifying pixels into different types, 
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such as edges, textures, or flat regions, this classification can inform stereo matching. Our 

classification-based approach ensures that pixels are matched according to their specific 

characteristics, thereby reducing matching ambiguities and improving overall consistency in 

disparity estimation. 

This research proposes an innovative combination of cross-based matching with image 

classification to refine stereo matching. Classifying pixels into distinct categories enables the 

application of class-specific constraints during the matching process, providing improved 

precision in disparity maps, particularly at object edges. 

Methodology 
The proposed method, referred to as "Class-aided" throughout this paper, integrates Cross-

based matching with pixel classification to provide an optimized initialized disparity map for 

the subsequent SGM. Class-aided matching leverages semantic class information and 

integrates it into cost aggregation in Cross-based matching to guide the image-matching 

process in a more reliable way. Considering the underlying object classes in the scene, this 

approach enhances the matching reliability, particularly in areas where traditional methods 

struggle. Specifically, the methodology integrates manual image classification images, referred 

to as classified images, into Cross-based matching and generates an initialized disparity to 

subsequent processes. The classified image extracts high-level semantic features, which are 

then used to guide the matching cost computation and initialized disparity map refinement. 

Class-aided matching involves classifying pixels based on image classification to constrain the 

cost aggregation process, enhancing depth estimation and disparity map accuracy. The steps in 

the methodology are outlined in Figure 3: 
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Figure 1: Workflow 

a.   Dataset 

The image pair used in the experiment comes from the Middlebury dataset (Scharstein & 

Szeliski, 2003). It consists of high-resolution stereo sequences with complex geometry and 

provides pixel-accurate ground truth of disparity and occlusion area that could be used to 

evaluate the quality of the result. The image pair is shown in Figure 8. 

   
(Cones) 
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(Teddy) 

Figure 2: Experiment image pair 

b.   Experiment configuration 

The experiments were conducted using multiple configurations, including varying the number 

of objects in the image classification and adjusting the classification quality. These parameters 

allowed us to analyze the sensitivity of the method to different classification accuracies and 

segmentation complexities. Detailed description is shown in Table 1. By following this 

experimental configuration, Class-aided matching was rigorously evaluated to demonstrate its 

potential to enhance disparity map accuracy while addressing the limitations of traditional 

stereo-matching techniques. 

Table 1: Experiment configuration 

Cross-based Used as the reference method to assess the performance impact of 
different Class-aided matching configurations. 

Class-aided Involves classifying all objects in the scene and assigning distinct 
labels to each. 

Partial 
Class-aided 

Consolidates labels in areas where adding labels caused frequent new 
errors, aiming to reduce misclassifications. 

Ground truth 
Class-aided 

Refines the classified image based on ground truth disparity data. This 
method prioritizes the left image, checks for discrepancies in the right 
image and its labels, and makes manual adjustments accordingly. 

Partial  
Ground truth 
Class-aided 

The same treatment method as Ground truth Class-aided but merging 
labels for certain regions, such as the background. Instead of applying 
the ground truth data across the entire image, it focuses on key areas 
where errors are common, like object boundaries. 

c.   Classified image 

An image classification process is employed before conducting stereo matching. Each pixel on 

the classified image is assigned a class label that corresponds to its local image characteristics. 

These class labels will be used in the subsequent stereo-matching process to enforce class-



                              Asian Conference on Remote Sensing (ACRS 2024)  

Page 8 of 28 

specific potential matching areas. Limit the cost aggregation area and compute the pixel cost 

only when the labels of the potential correspondence points are identical. 

Figure 5 is the initial result after using a pre-trained model, Segment Anything Model (SAM) 

(Kirillov et al., 2023), which is only used for image segmentation and has yet to add semantic 

information. It can be observed that the result is acceptable in the overall area, but there are 

still some correspondence places that have different segmentation results(red circles in Figure 

3). If these classified images are used in the sequence experiment process, then this issue is an 

essential task to solve. Thus, to evaluate the effect of the proposed algorithms, a manually 

image classification was applied provisionally to the research, the classified image used in the 

experiments are shown in Table 2. 

  
Figure 3: Initial classified image 

Table 2: Manual classified image 

Cones 

Class-aided Partial Class-aided 

      
Ground truth Class-aided Partial Ground truth Class-aided 
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Teddy 

Class-aided Partial Class-aided 

      
Ground truth Class-aided Partial Ground truth Class-aided 

      

d.   Class-Aided Matching 

In Class-aided methods, classified image is utilized as a constraint to restrict the range of stereo 

matching. The classification information, which provides semantic labels for each pixel, serves 

as a guide in the initialized disparity map generation by introducing pixel-wise constraints. 

Specifically, it ensures that only pixels belonging to the same semantic class are matched while 

discarding matches between pixels with different labels. This approach helps refine the 

matching process, particularly in regions where Cross-based matching struggles, such as 

around object boundaries. 

The following pixel cost calculation functions illustrate how classification constraints are 

incorporated into the algorithm as shown below equations: 

𝐶𝐶𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑) = �
1
3
��𝐼𝐼𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) − 𝐼𝐼𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑝𝑝,𝑑𝑑)�

𝑖𝑖

, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑)

∞, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝) ≠ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑)
(1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝,𝑑𝑑) = �
1
3
�𝐻𝐻�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑)�
𝑖𝑖

, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑)

∞, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝) ≠ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑)
   (2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑞𝑞∈𝑁𝑁𝑁𝑁�𝐼𝐼(𝑞𝑞) ≥ 𝐼𝐼(𝑝𝑝)� 

∀𝑖𝑖 ∈ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� 

where 

𝐶𝐶𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑): AD matching cost. 

𝐼𝐼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝): The gradient value of the pixel in the left image. 
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𝐼𝐼𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑝𝑝,𝑑𝑑): The gradient value of the pixel in the left image corresponding to the right 

image, with disparity 𝑑𝑑. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿(𝑝𝑝): The label of the pixel in the left image. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅(𝑝𝑝,𝑑𝑑): The label of the pixel in the left image corresponding to the right image, with 

disparity 𝑑𝑑. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝,𝑑𝑑): Census matching cost. 

𝐻𝐻: Hamming distance. 

𝐼𝐼(𝑝𝑝): Color gradient values of adjacent pixels within the mask. 

𝐼𝐼(𝑞𝑞): Color gradient value of the center pixel in the mask. 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�: The image gradient values of the three RGB bands in the x and y 

directions respectively. 

This method integrates the classified image information, leveraging it to enforce more accurate 

matches by only considering pixels of the same class. This significantly improves the 

algorithm’s robustness in challenging regions like object boundaries, reducing errors and 

improving depth estimation performance. The labeling pixels are treated with stronger spatial 

constraints, reducing the chances of mismatches along object borders. This combined approach 

demonstrates the potential of using classification constraints to improve the quality of disparity 

maps, ultimately providing a more robust solution for depth estimation in stereo-matching tasks. 

e.   Quality Assessment 

Finally, a quality assessment step is performed to evaluate the accuracy of the generated 

disparity maps. Several evaluation metrics were employed to assess the performance of the 

proposed Class-aided matching method comprehensively. Each of these metrics plays a crucial 

role in quantifying the accuracy of disparity map generation and identifying potential areas for 

improvement. The following sections detail the key evaluation metrics used in the experiment: 

• Error rate 

Pixel accuracy refers to the percentage of error-matched pixels in the generated disparity map 

compared to the ground truth of the non-occlusion area (Table 3). It measures the overall 

performance of the stereo-matching algorithm. Equation 3 is calculated as the ratio of the 

number of pixels with wrong estimated disparity values to the total number of pixels in the 

non-occlusion area. 
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Table 3: Ground truth data of non-occlusion 

Cones Teddy 

  

𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑁𝑁
� � |𝑑𝑑(𝑝𝑝) − 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝)|
𝑝𝑝∈𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜

> 𝛿𝛿� (3) 

where: 

𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜: The error rate of the non-occlusion area. 

𝑑𝑑(𝑝𝑝): Ground truth of the non-occlusion area. 

𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝): The disparity map of the non-occlusion area. 

𝛿𝛿: Threshold, usually to be 1. 

A lower error rate indicates that the stereo-matching algorithm performs well in aligning the 

depth values, contributing to more reliable disparity maps and reflecting the overall 

effectiveness of the proposed algorithm in depth estimation. 

• Difference map 

A difference map is a visual representation of the differences between the disparity map and 

the ground truth, which is calculated by Equation 4. This map highlights the pixel-by-pixel 

differences, making it easy to identify regions where the algorithm performed poorly. By 

inspecting the difference map, we can pinpoint specific problem areas, such as occluded 

regions, object boundaries, and regions with repetitive patterns, which are commonly difficult 

for stereo-matching algorithms. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜 = |𝑑𝑑(𝑝𝑝) − 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝)| (4) 

• Optimized disparity 

The optimized disparity is a representation of the improvement achieved by using the Class-

aided matching approach compared to the Cross-based method. It is calculated by subtracting 
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the difference map of Class-aided matching from the difference map of Cross-based matching, 

as shown in Equation 5: 

𝑂𝑂𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜 = |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| − |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| (5) 

where 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: The difference map of Cross-based matching. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: The difference map of Class-aided matching. 

This process highlights the areas where Class-aided matching has reduced the disparity errors 

relative to the Cross-based method, specifically within the non-occlusion regions. If the value 

of the optimized disparity is positive, it indicates that Class-aided matching has improved the 

accuracy in that region. Conversely, if the value is negative or zero, it suggests that there was 

no improvement or that Class-aided matching performed similarly or worse. This visualization 

helps to clearly assess the effectiveness of the optimization in refining the disparity map. 

• Optimized area 

Optimized area plays a critical role in determining the effectiveness of the Class-aided 

matching methods by quantifying the overall disparity errors. The formula can be expressed 

Equation 6: 

𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜 = � � (|𝑑𝑑(𝑝𝑝) − 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝)| > 𝛿𝛿)
𝑝𝑝∈𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜

∗ 𝑛𝑛|𝑑𝑑(𝑝𝑝)−𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝)|>𝛿𝛿� (6) 

where: 

𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁−𝑜𝑜𝑜𝑜𝑜𝑜: The optimized area of the non-occlusion area. 

𝑛𝑛: the number of pixels where errors occurred 

It calculates the optimized area by considering both the number of mismatched pixels in the 

non-occlusion area and the magnitude of the disparity error for each pixel. It provides a 

comprehensive measure of the overall error in the disparity map, capturing both the frequency 

of pixel mismatches and the severity of those errors. Thus, it reflects how many pixels were 

mismatched and how much the disparity values deviate from the ground truth, giving a deeper 

insight into the algorithm's performance. 

• Error Distribution Map 

The error distribution map is a spatial representation of the disparity errors within the image. 

Unlike the difference map, it compares the error pixel location between the reference group 

(Cross-based matching) and the other test groups. By visually mapping the distribution of 

errors across the image, researchers can observe how different algorithms perform in specific 
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regions, such as edges, textures, or low-texture areas. The map indicates where errors occur 

and how their frequency and distribution change when applying different methods. This visual 

comparison helps identify patterns of disparity errors and assess the effectiveness of various 

stereo-matching methods, especially in challenging regions of the image. 

Results and Discussion 
In the results section, we will analyze both the initial disparity image and the final disparity 

map. The initial disparity image is produced after applying Class-aided matching, while the 

final disparity map is generated after applying SGM, which uses the initial disparity to 

determine the penalty parameters. Tables 4 and 5 present the initial disparity image and the 

final disparity map, respectively, providing both visual and quantitative insights into the depth 

estimation performance of various image-matching methods. 

Table 4: Initialized disparity map of different methods 

Cones 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 
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Teddy 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 

  

Table 5: Final disparity map of different methods 

Cones 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 
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Teddy 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 

  

The difference maps of the initial disparity image and the final disparity map in Tables 6 and 

7 show that most errors are concentrated around the edges of objects with different labels. This 

is expected, as object boundaries typically pose challenges for matching algorithms due to 

variations in texture, lighting, and occlusion. In addition to edge errors in the Teddy dataset, 

there are noticeable planar errors in the background, where the high texture repeatability or 

homogeneity in the original image complicates matching. However, aside from these 

observations, no visually distinct differences in overall disparity performance are noticeable 

between the various methods. This makes it difficult to draw firm conclusions based on visual 

analysis alone. Therefore, a rigorous assessment of the algorithm's performance requires a 

reliance on quantitative metrics, which provide the necessary data to compare the effectiveness 

of each approach, particularly in handling matching at object edges and across the entire image. 
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Table 6: Initialized difference map of different methods 

Cones 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 

  

Teddy 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 
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Table 7: Final difference map of different methods 

Cones 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 

  

Teddy 

Cross-based Class-aided Partial Class-aided 

   

Ground truth Class-aided Partial Ground truth Class-aided 
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The analysis of the optimized disparity maps in Figures 8 and 9 reveals several points. The 

adjusted regions in the optimized disparity maps are primarily concentrated around the edges 

of classified objects. This is expected, as object boundaries often present significant challenges 

for stereo-matching algorithms due to texture, lighting, and occlusion variations. The 

optimization process has effectively focused on these critical areas, enhancing the accuracy of 

disparity estimation where it is most needed. The introduction of ground truth-based 

adjustments has visibly improved the performance of the disparity map. On the visual 

representation, regions marked in yellow indicate areas where corrections have been applied 

effectively. This highlights the benefits of using ground truth information to refine the disparity 

maps, as it allows for precise adjustments and enhances overall accuracy. The clear 

improvement in these regions underscores the importance of high-quality classification and 

accurate reference data in optimizing stereo-matching results. Overall, the optimized maps 

demonstrate that targeted adjustments, especially around object boundaries, can significantly 

enhance disparity map accuracy. The use of ground truth data further refines these adjustments, 

leading to improved results. 

Table 8: Initialized optimized map of different methods 

Cones 

Class-aided Partial Class-aided 

  
Ground truth Class-aided Partial Ground truth Class-aided 
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Teddy 

Class-aided Partial Class-aided 

  
Ground truth Class-aided Partial Ground truth Class-aided 

  
Table 9: Final optimized map of different methods 

Cones 

Class-aided Partial Class-aided 
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Ground truth Class-aided Partial Ground truth Class-aided 

  
Teddy 

Class-aided Partial Class-aided 

  
Ground truth Class-aided Partial Ground truth Class-aided 

  

Several key observations can be drawn regarding the impact of classification and ground truth 

on disparity map quality and the relationship between optimized area and error rate based on 

Figures 4 and 5: 

• Impact of classification detailed on initialized disparities 

The optimized area of Class-aided (8441) and Partial Class-aided (6094), and Ground truth 

Class-aided (21408) and Ground truth Partial Class-aided (15817) in Cones dataset, indicating 

that finer classification can provide better-initialized disparity images. Comparing the Whole 

Class-aided and Partial Class-aided approaches, the former generally performs better during 

initialization: 
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Classified images may initially produce more accurate disparity maps, however,  the 

subsequent SGM may lead to a lower optimized area in the final disparity map. Thus, finer 

classification generally improves the initialized image but may require more refined 

adjustments during optimization. 

• Effectiveness of accurate classification in reducing disparity range 

The use of ground truth classification plays a critical role in refining the disparity maps, 

significantly improving results when applied to classified images. The data clearly shows the 

importance of accurate classification when comparing the impact of Class-aided and Ground 

Truth Class-aided, and Partial Class-aided and Partial Ground Truth Class-aided. The data 

shows that introducing accurate classification to generate the initialized disparity map could 

indeed increase the optimized area. Both Cones and Teddy datasets have seen this trend. 

These findings highlight that accurate classification can significantly improve the 

approximation of disparity, especially when applied to classified images, emphasizing the 

importance of classification quality in stereo-matching accuracy. 

• Relationship between optimized area and error rate 

Interestingly, the data reveals that a larger optimized area does not necessarily correlate with a 

lower error rate of matching results. For instance, Class-aided in the Cones dataset achieves a 

positive optimized area of 2153 pixels in the final map. Yet, its error rate (3.0210%) is not 

dramatically lower than that of Cross-based (2.9751%). The same trend can be observed in 

Partial Class-aided case. This shows that while a larger optimized area is generally desirable, 

it does not always guarantee a lower error rate. This discrepancy suggests that other factors, 

such as how well the optimization process handles specific challenging regions, e.g., edges or 

occlusions, play a crucial role in determining the final disparity accuracy. 

• Impact of Class-aided Disparity on SGM 

The Class-aided approach, by producing higher-quality initialized disparity maps, can assist in 

the automated decision-making of penalty parameters, making them better suited to the specific 

image set and more effective for subsequent SGM. This method has shown its effectiveness in 

certain datasets, as evidenced by positive values in the optimized area. However, the presence 

of negative values in other datasets indicates that even with higher-quality initialized disparity, 

errors may still occur during SGM, leading to less effective optimization compared to the 

initialized optimized area. Therefore, integrating classified information more effectively into 

the SGM stage remains a key area for future research.  
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In summary, finer classification improves the initial disparity map but may require more careful 

handling in the later SGM stages. Ground truth-based classification significantly enhances 

disparity map accuracy by constraining the disparity range, particularly in challenging areas 

like object boundaries. However, the relationship between the optimized area and error rate is 

not always straightforward. This highlights the importance of the algorithm's ability to 

effectively manage difficult regions. Overall, these findings emphasize the intricate nature of 

optimizing stereo-matching algorithms, where classification quality, accurate classification, 

and robust optimization techniques all play crucial roles in achieving the best results. 

 
Figure 4: Optimized area of different methods 
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Figure 5: Error rate of different methods 

The error distribution map provides a spatial representation of disparity errors and the 

effectiveness of different methods. By marking pixels with three distinct colors—Red for error 

pixels corrected by the proposed methods, Green for error pixels present only in Cross-based 

matching, and Blue for error pixels occurring in both methods. The map visually highlights 

where improvements and persistent challenges lie. The use of these colors is significant as it 

provides a clear visual representation of the effectiveness of the methods, making it easier for 

the audience to interpret the map. 

The error distribution map clearly shows that the majority of differences between the methods 

are concentrated around object borders. This aligns with the known challenge of accurately 

matching pixels at object boundaries due to occlusions, texture changes, and disparities in pixel 

correspondences. 

The red pixels, representing errors corrected by the proposed methods, indicate that the Class-

aided matching successfully refines disparity estimation, particularly by reducing errors near 

object borders. These corrections validate the proposed method’s effectiveness in improving 

depth accuracy by incorporating pixel classification constraints. However, the presence of 

green pixels, which represent errors unique to the Cross-based matching method, suggests that 

despite its traditional strength in stereo matching, there are areas, especially around complex 

object borders, where the Cross-based method fails. The proposed method offers a significant 

improvement. Conversely, the blue pixels, indicating errors that persist in both methods, 

highlight the limitations of the proposed class-constrained approach. These uncorrected pixels 
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serve as a reminder that while the proposed method enhances the results, it still struggles in 

areas where accurate classification or segmentation is difficult. Blue pixels around object 

borders suggest that segmentation inaccuracies or challenging texture regions may prevent the 

method from fully eliminating errors. 

Table 10: Error distribution map 

Cones 

Class-aided Partial Class-aided 

  

Ground truth Class-aided Partial Ground truth Class-aided 

  

Teddy 

Class-aided Partial Class-aided 
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Ground truth Class-aided Partial Ground truth Class-aided 

  

Based on the quality assessment, the Ground truth Class-aided matching method was selected 

to generate a high-quality 3D point cloud that incorporates object labels. A comparison 

between this labeled point cloud and the original, unclassified (Figure 6) version reveals that 

the introduction of labels transforms raw point cloud data into structured, meaningful point 

cloud information (Figure 7). This labeling process significantly enhances the interpretability 

of the data by providing users with categorized, context-specific insights about the scene. The 

advantages of this transformation are particularly notable in applications such as surveying and 

mapping, where users can directly extract relevant information, such as object boundaries, 

classifications, and spatial relationships, from the labeled point cloud. This enriched dataset 

enables more detailed and accurate environmental analysis, making it highly actionable for 

decision-making processes.  

This study’s primary contribution lies in showcasing how the integration of object 

classification within point clouds bridges the gap between unstructured data and actionable 

information. The result is a more refined and informative representation, offering valuable 

insights for future applications, particularly in fields like geospatial analysis and remote sensing 

applications. 

    
Figure 6: Point Cloud data 
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Figure 7: Point Cloud information 

Conclusion and Recommendation 
The results of this study underscore the significant benefits of utilizing higher-quality classified 

images to enhance the refinement of disparity map generation. Despite these advantages, 

several technical and operational constraints currently limit the practical feasibility of this 

approach:  

1. Challenges with Current Classification Models 

Existing classification models often lack the accuracy required for effective object 

classification within the proposed method. Although these models can provide preliminary 

classifications, the extensive manual corrections needed afterward undermine the 

efficiency of the algorithm, rendering it labor-intensive and time-consuming. 

2. Limitations of Absolute Constraints 

The absolute constraints initially imposed by the algorithm are not sustainable with current 

technological capabilities. In scenarios where perfectly accurate classified images cannot 

be obtained, the method must adapt by using more flexible, relative constraints during the 

matching process. This adjustment will help address inaccuracies introduced by imperfect 

classifications and improve overall performance.   

In this study, the pixel costs generated from Cross-based and Class-aided approaches are 

integrated into the subsequent SGM process to determine the overall matching cost. When the 

initialized disparity is produced during the first stage, the constraint of assigning infinite cost 

values to pixel pairs with mismatched labels between the left and right images is carried 

forward into the SGM stage. This means that if a pixel in the right image falls outside the valid 

label range within the disparity scope, it will be assigned a prohibitively high cost. As a result, 

under SGM's winner-takes-all principle, such disparity values are excluded from being selected. 

This mechanism underscores the importance of high-quality initialized disparity maps. The 

constraint imposed by the pixel cost ensures that mismatched labels in the right image are 
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effectively penalized, thus improving the robustness of the disparity estimation process. 

Incorporating this cost structure highlights how classification information aids in narrowing 

the search range and minimizing errors, further emphasizing the role of label consistency in 

stereo-matching accuracy. 

The successful creation of a labeled 3D point cloud using the Ground truth Class-aided 

matching method underscores the broader impact of this approach. By transforming raw point 

cloud data into structured, labeled information, this method has significant implications for 

applications such as surveying, mapping, and geospatial analysis, where enhanced 

interpretability and decision-making are essential. 

Future work should concentrate on optimizing the integration of classified information into the 

SGM process. This entails developing methods that balance improved classification accuracy 

with the minimization of new errors, thus enhancing the robustness and efficiency of disparity 

map algorithms. Additionally, research should explore dynamic or adaptive constraints to 

address challenges related to object boundaries and complex textures.  

In summary, while this study illustrates the potential of using classification-based constraints 

to enhance disparity map algorithms, ongoing research is necessary to refine current 

classification techniques and integration methods. Advancements in these areas could lead to 

more efficient and automated algorithms, effectively leveraging available data and reducing 

the need for manual interventions, thereby maximizing the potential of classified information. 
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