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1. Introduction  

Monocular Visual Odometry (MVO) is a key component of autonomous driving 

technology, accurately determining a vehicle's relative position and orientation using a 

single camera. Recent research in the field of SLAM (Simultaneous Localization and 

Mapping) has been focusing on improving model robustness in challenging environments 

(Cadena et al.,2016). Particularly, efforts are being made to enhance adaptability to 

changing lighting conditions and to achieve consistent results across cameras with varying 

performance levels (Zhang et al, 2022). This study evaluates the performance of MVO in 

challenging environments, under low-light conditions and narrow FOV scenarios. In low-

light environments, the quality of images captured by the camera deteriorates, making 

feature extraction and matching processes challenging. Additionally, as the camera's FOV 

narrows, the system's robustness to rotational movements tends to decrease. Considering 

these challenging conditions, this study evaluate the robustness of a monocular visual 

odometry system utilizing relative orientation techniques.  

 

2. MATERIALS AND METHODS  

2.1 Material 

This study used publicly available data for Odometry/SLAM provided by the KITTI 

community. KITTI data is a representative benchmark for autonomous driving systems 

and computer vision research, collected in various road environments including urban, 

suburban, and highway settings. It allows for performance evaluation of autonomous 

driving systems under various traffic conditions. 

 

2.2 Monocular Visual Odometry using relative orientation 

In this study, we design a monocular VO based on relative orientation among adjacent 

video frames. Relative orientation in photogrammetry is a method of estimating the 
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geometric relationship between two images. It calculates relative displacement and pose 

while fixing one of the three coordinate axes. The displacement represents movement in 

relative space, and from the geometric information obtained through this relative 

orientation, the movement vector and rotation estimate can be used in VO (Jung, 2018). 

 

2.3 Monocular Visual Odometry Design 

This section explains the monocular VO structure and processing sequence. The Shi-

Tomasi corner feature algorithm is applied for real-time feature point extraction, and KLT 

(Kanade-Lucas-Tomasi) for feature point tracking. After feature point extraction and 

tracking, the relative orientation observation equation is established in images moving 

along the optical axis. We then calculate the geometric relationship between consecutive 

frames. When estimating image geometry using a single camera, it is impossible to 

estimate the actual scale. Therefore, additional information such as the camera height 

from the ground is essential to estimate the absolute scale. In this study, the absolute scale 

is estimated assuming that the height of the vehicle carrying the camera is known. At this 

time, as height differences occur in proportion to the actual moving speed, the RANSAC 

(Random Sample Consensus) algorithm is used to remove outliers, and finally, accurate 

position and pose are estimated. 

 

2.4 Low-light Image Generate with CycleGAN 

In this study, the KITTI dataset was transformed using the CycleGAN model to simulate 

low-light environments. By leveraging this model, realistic low-light images were 

generated through unsupervised learning. CycleGAN (Zhu et al., 2017) is a model capable 

of learning image-to-image translation between different domains without the need for 

direct pairing. It allows domain conversion without the need for precisely paired datasets 

required in supervised learning. Moreover, the core concept of CycleGAN, the cycle 

consistency loss, ensures the retention of important visual information by learning the 

process of converting an image to another domain and then back to its original domain. 

This mechanism allows for the simulation of lighting and contrast changes that may occur 

in real low-light environments while minimizing image distortion or information loss. 

Therefore, the KITTI dataset, a widely recognized dataset, was transformed to experiment 

in low-light conditions. 
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Figure 2. Original Image (Left) & Low-light Image (Right) 

 

2.5 Evaluation in narrow FOV  

In this study, the size of the KITTI data was modified to limit the FOV of the input 

images to evaluate MVO performance in narrow FOV environments. As the camera's 

FOV decreases, the instability of feature tracking increases, which negatively affects the 

overall accuracy of the system's position estimation. By cropping the horizontal and 

vertical FOV of the original KITTI data to a certain ratio, datasets with various levels of 

FOV restrictions were created. These datasets simulate environments like those with 

cameras using small sensors or lenses. 

 

3. Results and Discussion  

The performance evaluation of MVO in low-light environments and narrow FOV 

conditions was conducted using the proposed method. The results analyze the impact of 

these challenging conditions on the accuracy of MVO and evaluate the robustness of the 

system using relative orientation 

 

3.1 Evaluation in Low-light condition 

Figure 3 shows the comparison of the true trajectory and the estimated trajectory from the 

proposed method in original images(Left) and with low-light condition(Right). By 

comparing the trajectories in the figure below, it is evident that the localization 

performance of MVO in low-light environments has deteriorated. Despite conducting 

experiments in the same area, the transformed KITTI data using the CycleGAN model 

exhibited trajectory errors due to low-light conditions. The estimated trajectory(Right 

image) in low-light conditions (red line) showed greater positional errors compared to the 

normal lighting conditions and the ground truth trajectory (blue line). Nevertheless, in 

simple, straight paths, the difference between the two environments was minimal, and the 

errors were primarily observed in sections with rotations or sudden directional changes. 

This indicates that while feature extraction and matching may become challenging in low-
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light conditions, the system was still able to demonstrate localization performance in less 

complex paths. 

 

Figure 3. Comparison with Truth Trajectory (Left) & Original images Trajectory (Right) 

 

3.2 Evaluation in narrow FOV condition 

The results of the MVO system performance experiments in narrow FOV environments 

showed that as the FOV becomes more restricted, the overall accuracy of the system's 

position estimation tended to decrease. As the FOV decreased, the instability of feature 

tracking increased, leading to a decline in the overall position estimation accuracy of the 

system. Specifically, in situations involving rotational motion, the absolute shortage of 

feature point matches led to increased tracking errors. Table 1 presents a comparison of MVO 

system performance under various FOV conditions. The widest FOV of 1242x375 recorded 

the lowest RMSE (0.055444), indicating the best system performance. Conversely, as the 

FOV narrowed, there was a tendency for the RMSE values to increase. In particular, the FOV 

of 1000x250 showed the highest RMSE (0.632797), which highlighted the performance 

degradation when the FOV is reduced horizontally. Rotational errors increased nonlinearly as 

FOV narrowed, with higher RMSE observed at smaller horizontal FOVs. However, the 

relationship between errors was not always linear with respect to horizontal and vertical 

dimensions, and the extent of errors varied depending on the specific conditions. This 

variability may have been influenced by the shooting environment. 

 Table 1: Narrow FOV Experiments Results 

Size RMSE Rotation Error 

930x375 0.337576 0.00910 

1000x375 0.254277 0.00973 

1000x250 0.632797 0.00919 

1050x280 0.429668 0.00980 

1242x280 0.343162 0.01169 

1242x300 0.172468 0.01178 

1242x375 0.055444 0.01195 
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4. Conclusion and Recommendation  

This study evaluated the performance of a relative orientation-based MVO system in low-

light and narrow FOV environments. In low-light conditions, the degradation in the quality 

of images captured by the camera resulted in larger errors, particularly in sections 

involving rotations or sudden directional changes. In narrow FOV experiments, pixel-to-

FOV conversion, a threshold of approximately 70 degrees (horizontal FOV) was identified  

.as the minimum requirement for maintaining accurate localization. When the horizontal 

FOV dropped below this threshold, system performance deteriorated sharply, with RMSE 

increasing significantly. Therefore, it is recommended that MVO systems be designed to 

ensure a minimum horizontal FOV of 70 degrees to maintain robust performance, 

especially in dynamic environments. The results of this study confirmed that the relative 

orientation-based MVO system could exhibit a certain level of robustness even in low-

light and narrow FOV conditions. Future research should focus on improving performance 

in low-light environments by incorporating additional feature extraction and matching 

algorithms and addressing the inherent issue of rotational errors in MVO systems. 
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