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Abstract :  

Cloud cover poses a significant challenge for satellite imagery analysis, obstructing surface 

observations and creating data gaps that impede various applications, including land cover 

classification, weather forecasting, and disaster monitoring. Traditional cloud removal 

techniques and recent deep learning approaches have provided promising outcome but it fails 

in achieving high-quality, consistent results. This work presents a novel approach combining 

Spatiotemporal Generative Adversarial Networks and Cycle-Consistent Generative 

Adversarial Networks to improve the performance of cloud removal from Sentinel 2 satellite 

imagery. The proposed hybrid model leverages the temporal context provided by STGAN to 

generate initial cloud-free images by processing sequences of satellite images over time. These 

initial images are then refined using CycleGAN, which employs cycle consistency loss to ensure 

the transformation between cloudy and cloud-free images preserves essential features and 

realism. This combination addresses the limitations of previous methods by ensuring both 

temporal consistency and high image quality. This work demonstrates the potential of 

integrating spatiotemporal and cycle-consistent approaches to significantly enhance cloud 

removal processes, offering a robust solution for real-time monitoring and analysis in various 

satellite imagery downstream applications. 
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Introduction  

Satellite images play a vital role in many different areas from environmental monitoring and 

agricultural management to disaster response and weather forecasting. But, often some 
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bodies of cloud cover are disturbing the satellite data by either covering a part of the earth's 

surface or inserting holes in the data. This issue is one of the main reasons why more 

research was made on providing reliable and accurate satellite images, which are the basis 

for the different remote sensing applications. Hence, the challenge of cloud detection and 

removal has led to intensive study of potential algorithms and prototyping a cloud-free 

satellite image. The traditional approach for cloud removal has used simple methods such 

as interpolation and filtering. These approaches do enhance the image in a way, however, 

mostly, they do not provide the quality of consistency in the results of the processing which 

is necessary for the analysis. The application of deep learning methods of artificial 

intelligence has been the main contributor to the development of the aforementioned non-

traditional solutions.  

For the cloud identification and removal problems in high-resolution satellite images, we 

put forward the approach of combining Spatiotemporal Generative Adversarial Networks 

(STGAN) with Cycle-Consistent Generative Adversarial Networks (CycleGAN). Our dual 

network approach makes the best of the strengths of both networks to obtain superior cloud 

removal from Sentinel 2 satellite images. The first stage of STGAN has the capability to 

utilize temporal adjacent images to accomplish the initial prediction by using information 

from previous and next points. The synthetic images are then improved by CycleGAN to 

ensure that the cloud-to-cloud-free transformation is through cycle consistency loss, and 

clarity and composition are not disturbed. Our technique tries to deal with the downsides of 

earlier techniques and at the same time provide a more robust cloud removal method by 

using these two advanced GAN models. This combined model has increased the quality of 

the satellite images in a single manner as well as for a long term, and thus it has proved it 

itself to be very efficient in real-time remote sensing and analysis. The hybrid model can be 

used in many different ways, including land-use classification, vegetation monitoring, urban 

planning and climate analysis, all of which require cloud-free, high-quality satellite images. 

The preservation of both spatial and temporal features ensures that the cloud removal 

process does not interfere with the spectral integrity of the satellite data. 

 

Literature Review  

There are several ways to deal with the problem of cloud occlusions in satellite images. The 
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usual methods, like compositing multi-temporal images are mostly cloud-free images, but 

they require using large volumes of data. Deep learning methods have indicated that they 

have a promising future, for instance, there are methods such as MCGAN and Cloud-GAN 

which use generative adversarial network while cloud removal is being processed. But, these 

techniques have their own limits like identifying dense clouds or relying heavily on artificial 

data. A number of researchers have concentrated on specific types of cloud occlusions, such 

as the ones in the upper atmosphere, but their usage is very limited. Moreover, nearly none 

of the existing methods take full advantage of the temporal information provided over time 

in the satellite imagery sequence. Generative models, specifically GANs, have gained 

significant attention for tasks like the conversion of images. Research like Pix2Pix and Cycle 

GAN, used in super-resolution and style transfer, have were the most demonstrating works. 

In the case of cloud removal approaches such as MCGAN and Cycle GAN using variations, 

there have been experiments with but they have the difficulty in case of the dense of clouds. 

Other significant contributions include cloud removal based on unsupervised remote sensing 

by contrastive learning but they used GAN UD which generates images that can remove the 

clouds but cannot accurately recover the image details in the area entirely covered by the 

clouds, resulting in pixel distortion in the area blocks with thick clouds. STGAN baseline 

models are also used for the process of cloud removal and cloud shadow removal, but they 

lack in utilizing the spatio temporal data effectively and produce less quality images. Future 

works primarily revolve around integrating time series data for generalizability across 

various environment for more complex images and further making strong techniques to be 

efficient for precise Earth observation. 

Our proposed model will resolve limitations like lack of temporal coherence, high fidelity 

cloud removal , generalization. The work presents a significant improvement in these 

aspects, additionally the hybrid model is implemented in such a way that it minimizes 

overfitting due to inclusion of both temporal data and cycle consistency without degrading 

the image quality. Let us take a look at our methodology proposed in the implementation of 

the hybrid model. 

 

Methodology  

 

Problem Definition and Dataset Preparation: 
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Our study wants to improve the quality of imagery clouds by time stopping the model of 

temporal discontinuity images and proving its effectiveness through spatial and temporal 

information. Our suggested STGAN- Cycle GAN hybrid model is made to solve the problem 

of clouds remaining, and at the same time keep the core part of cloud-free areas intact. We 

get our dataset from Sentinel-2 or similar satellite sources which provide multi-temporal 

data captured under both conditions-cloudy and cloud-free. We preprocess these images by 

making the pixel values normalized, re-sizing, and converting them into the formats that can 

be fed to the model. The motivation for selecting the hybrid STGAN + Cycle GAN model 

stems from the limitations observed in existing cloud removal approaches, particularly in 

addressing both spatial accuracy and temporal consistency simultaneously. By combining 

the strengths of both models, the hybrid STGAN + Cycle GAN not only provides high 

accuracy and image quality (PSNR, SSIM) but also ensures that the temporal dynamics of 

cloud cover are consistently addressed across multiple frames. This makes the hybrid model 

particularly well-suited for real-world satellite applications, outperforming existing 

techniques. 

Proposed Model Architecture: 

The main two parts of our hybrid model include the Spatiotemporal Generative Adversarial 

Network (STGAN) and the Cycle-Consistent Generative Adversarial Network (Cycle 

GAN). The STGAN module is built to solve the issue of prediction of cloudy and cloud-

free images over time through spatiotemporal data. The generator is designed using 

convolutional and temporal modules to extract spatiotemporal information while a 

discriminator is used to distinguish the different classes of the image. The Cycle GAN 

module makes use of STGAN's output info, transforming the cloudy images to cloud-free 

versions with the help of the same style and spectral data. It incorporates a generator for 

image translation and a discriminator that ensures the generated images are identical to real 

cloud-free frames. 

 

 

 

 

 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 5 of 14 
 

 

Figure 1: Overview of proposed model architecture  

The model's approach consists of two networks which are STGAN and CycleGAN, and 

multi-scales are used to process airborne images at varying resolutions. The in-built spatial 

attention of the generators aids in the separation of cloudy and cloud-free sites thereby 

leading to better elimination of unwanted regions while also preserving the overall structure. 

Moreover, we include temporal consistency loss in STGAN and perceptual loss in 

CycleGAN to maintain temporal coherence as well as the details of the image static. 

Training Pipeline : 

Our training pipeline consists of three phases: STGAN pretraining, CycleGAN integration, 

and joint training of the hybrid model. In the initial phase, the Spatiotemporal GAN 

(STGAN) is pretrained to learn the temporal dynamics of clouds in multi-temporal satellite 

images. In the second phase, CycleGAN is introduced to further refine the cloud-free images 

produced by STGAN, improving the image quality and preventing distortions. In the final 

phase, the STGAN and CycleGAN models are jointly fine-tuned to form a cohesive hybrid 

model. This phase is crucial for integrating the temporal modeling power of STGAN with 

the spatial refinement capabilities of CycleGAN. 
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Figure 2: Model Architecture workflow  

Phase 1: The first step of the process of cloud removal pertains to the phase of pre-training 

a Spatiotemporal GAN (STGAN) to understand and model the temporal change of clouds 

in the multi-temporal satellite imagery. This artificial intelligence model is a complex one, 

and it is developed on a set of data which consists of satellite images in sequence with the 

presence of clouds on the first side and, their corresponding trouble-free images obtained 

from the ground truth on the other side. STGAN proclaims the adversarial learning process, 

in which the generator delivers the cloud-free images and the discriminator decides their 

authenticity, eventually, the generated imagery that is well enough to fake the discriminator. 

Additionally, to secure the correct detail and reconstructed image, the reconstruction loss is 

included, which forces the created cloud-free images to be like the ground truth images in 

both the material and the required structural elements. One of the major advantages of 

STGAN technology lies in the fact that it manages to keep time-related cohesion between 

the various cloud-free images that are placed within a sequence, without any loss of the 

integrity of the data 

Phase 2: In the second phase of cloud removal, CycleGAN is used to enhance the original 

cloud-free images initially provided by STGAN. At this point, the STGAN outputs and the 

initial cloudy images are transformed using a carefully devised set of loss functions. The 

cycle consistency loss guarantees that the process is reversible, that is, when you re-

transform the cloud-free image back to the cloudy state, it looks very similar to the original 

cloudy input. The back and forth nature of the consistency allows the image from the content 

to be largely retained no matter how deep the refinement gets. Following the successful 

operation of STGAN, CycleGAN also relies on an adversarial loss to enhance\nimage 

reality, thereby encouraging the model to output images that are indistinguishable from 

actual sky pictures. A distinguishing feature of this stage is the addition of the identity loss, 

which makes sure the already cloud-free areas in the image are kept at a high quality. This 

means that the resolution process only affects the clouded areas and their improvement not 

the parts of the image that are clear. The main purpose of this CycleGAN phase is to create 

a high-quality translation from cloudy to cloud-free images, therefore, it will refine the 

STGAN by correcting any distortions and improving the image quality. 
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Phase 3: In the final stage of cloud removal, the STGAN and CycleGAN models are both 

fine-tuned to perfection as a consequence of that the unified Hybrid model of combination 

is produced which assimilates the temporal modeling abilities of STGAEnumeration with 

the spatial sharpness of CycleGAN. This coherent amalgamation is gained by means of a 

sophisticated combined loss function that juggles three crucial components: adversarial 

losses from both STGAN and CycleGAN to guarantee the generation of realistic cloud-free 

images, temporal coherence loss from STGAN to keep constant the cloud removal process 

across the sequential frames, and cycle consistency loss from CycleGAN to keep the image-

like continuity unchanged during the transformation process. The fine-tuning process is 

conducted end-to-end, this allows for simultaneous optimization of both the temporal 

properties and the spatial details. The learning rates as well as the weights of distinct loss 

terms are carefully balanced so that neither spatial nor temporal aspects are the only ones 

optimized. This detailed integration along with a balanced optimization approach leads to a 

hybrid model that is excellent in terms of spatial and temporal consistency and at the same 

time excels in delivering a much better visual representation. The goal with the final phase 

is to test a robust, integrated system that removes clouds from satellite imagery with 

exceptional accuracy across multiple frames while respecting the intricate details and overall 

quality of the processed images. 

Expected Improvements and Challenges:  

There are significant improvements in temporal coherence, high-fidelity cloud removal, and 

overall image quality due to our comprehensive loss function. However, we acknowledge 

implementation challenges such as long training times, large dataset requirements 

sometimes complex datasets that may require intensive preprocessing and feature 

engineering. We address these challenges through distributed training strategies and careful 

dataset curation. 

Evaluation of trained model:  

PSNR measures the ratio between the maximum possible signal power and the noise 

introduced by the model (errors in cloud removal). Higher PSNR values indicate better 

image quality, with fewer artifacts introduced during cloud removal. 

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔 (
𝑀𝑎𝑥2

𝑀𝑆𝐸
) 
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where Max2 is the maximum possible pixel value of the image, and MSE is the mean squared 

error between the generated (cloud-free) and the ground truth (actual cloud-free) images. 

The hybrid model consistently generates cloud-free images with fewer artifacts due to the 

combination of spatiotemporal features and cycle consistency, leading to a more accurate 

reconstruction compared to single-image methods like U-Net or Cycle GAN. 

SSIM evaluates the perceived quality of images by comparing local patterns of pixel 

intensities, capturing structural information, luminance, and contrast. It ranges from 0 to 1, 

where 1 means the images are identical. 

SSIM(x,y)=(μx2+μy2+C1)(σx2+σy2+C2)/(2μxμy+C1)(2σxy+C2) 

where μ is the mean, σ is the variance, and C1 and C2 are small constants to stabilize the 

division. The hybrid model's multi-scale attention mechanisms ensure better preservation of 

fine spatial details such as edges and textures, resulting in a higher SSIM compared to other 

models like Cycle GAN or Pix2Pix, which may introduce distortions in finer details. 

The temporal Consistency measures how well a model maintains visual coherence across 

consecutive frames in a time-series dataset. A low temporal consistency indicates 

inconsistency across frames, which is undesirable in cloud removal for satellite imagery. 

Temporal consistency can be computed using frame-to-frame SSIM or by calculating 

differences in pixel values across consecutive images in a sequence. STGAN in the hybrid 

model explicitly models temporal dependencies, ensuring that cloud removal is consistent 

across time steps.  

MAE measures the average absolute differences between predicted and actual pixel values. 

It is a common metric for evaluating how accurately the model predicts each pixel. 

𝑀𝐴𝐸 = 1/𝑛(∑|𝑦 − 𝑦^|) 

Where y is the true value and y^ is the predicted value. By integrating both temporal and 

cycle consistency, the hybrid model generates images with fewer pixel-level errors. 

The F1-Score is used to evaluate the accuracy of cloud detection, considering both precision 

and recall. This is important in cloud removal tasks because the model needs to accurately 

detect and remove only cloud regions while preserving cloud-free regions. 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

The attention mechanism and temporal modeling in the hybrid model enable more precise 

detection of cloud-covered areas, leading to fewer false positives (incorrectly removing 

cloud-free regions) and fewer false negatives (failing to detect clouds). 

 

Results and Discussion: 

The combination of spatiotemporal and cycle-consistent techniques allows the hybrid 

model to outperform existing models in cloud removal, providing both high-quality outputs 

and robust performance across a wide range of cloud conditions. 

 

 

 

 

 

 

Figure 3: Results of hybrid model 

 

Model PSNR 

(dB) 

SSIM MAE MSE F1 score 

Proposed 

STGAN + 

CycleGAN 

model 

32.5 0.91 0.0 32 0.004 0.94 

STGAN 31.2 0.88 0.037 0.005 0.90 

Cycle 

GAN 

30.2 0.85 0.048 0.006 0.84 

SIFGAN 30.9 0.87 0.041 0.006 0.89 

Pix2Pix 29.5 0.83 0.055 0.008 0.82 

U-Net 28.0 0.79 0.061 0.011 0.78 

WGAN 30.9 0.87 0.043 0.006 0.88 

 

Table 1: Results compared to other models 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 10 of 14 
 

 

The new combination of STGAN and Cycle GAN altogether have an impeccable influence on 

the performance of the hybrid model that brings about the desired change in the cloud removal 

from satellite imagery. The current approach has a great capacity to make the most of the 

opportunities of both models that combine and therefore has resulted in the development of a 

practical device with excellent performance in the different aspects relating to the image quality 

and the required accuracy. The record of high SSIM values also confirms that the model further 

utilizes its competence to maintain the structure of the input images. SSIM is particularly 

crucial here, as it is a visual quality metric that measures the structural information being 

perceived. The fact that the model achieves a high mark in this parameter implies, along with 

effective cloud removal, that it also guarantees the highest visual integrity of the clouds-free 

images when compared to the original scenes. 

 

In terms of pixel-level accuracy, the hybrid model excels as evidenced by its low Mean 

Absolute Error (MAE) and Mean Squared Error (MSE) values. These metrics measure the 

average difference between the predicted cloud-free images and the actual ground truth images. 

The low values in both MAE and MSE demonstrate that the model achieves high precision in 

pixel reconstruction. Perhaps one of the most impressive aspects of the hybrid model's 

performance is its high F1-score in cloud detection and removal. The F1-score is a balanced 

measure of a model's precision and recall, providing a single score that indicates how well the 

model performs in identifying and removing clouds. It demonstrates that the model can 

effectively handle the complex task of cloud removal while maintaining high image quality 

and accuracy. This makes it particularly valuable for a wide range of applications involving 

satellite imagery, including environmental monitoring, urban planning, agricultural analysis, 

and disaster response, where accurate and cloud-free images are essential for informed 

decision-making. 

 

Conclusion and Recommendation : 

The new hybrid model, compounding Spatiotemporal Generative Adversarial Network 

(STGAN) and Cycle Consistent Generative Adversarial Network (Cycle GAN), is 

addressing a major issue in cloud removal technology. It utilizes two different models, one 

that specializes in space and another that complements it, and therefore delivers excellent 

outcomes in the terms of perspective quality, no clouds being visible, and other details 
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keeping in check. The combination of spatiotemporal modeling with cycle-consistency loss 

guarantees that the model not only effectively removes clouds but also keeps all significant 

information and remains of the highest fidelity level. The clearer, more correct images are 

the result of that, and these are very important in the application areas such as environmental 

monitoring and satellite-based assessments. 

In the future, multiple ways could be exploited to make the model even better. The best way 

to go would be to make it more generalized for different datasets and to make it more 

optimized so it can work in real-time. Furthermore, enhancement of the model by feedback 

from practical applications and the interconnection of the model with other remote sensing 

data types might expand the scope of its use. The pursuit of novel methods for cycle-

consistency, as well as the enhancement of the model's explainability and visualization, 

represents a valuable step in refining its performance and extending its utility. The solutions 

are dealing with very practical issues and adding new ideas through the inclusion of 

feedback from the satellite mapping community, which in turn improves the process of 

cloud removal. 
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