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Abstract Extreme rainfall events, characterized by substantial precipitation in a short period, have 

increased in frequency and intensity as climate change intensifies. Disaster response capabilities have 

become more crucial due to the increasing rate of unpredicted flood events. These extreme rainfall 

patterns necessitate the (near) real-time identification of affected areas to support decision-making and 

minimize damages. Synthetic Aperture Radar (SAR), unaffected by cloud cover and lighting conditions, 

is an optimized remote sensor for detecting flood occurrences and their extent. However, for real-time 

analysis of satellite images and support for disaster response, an automated flood monitoring system is 

required. In this study, we employed Amazon Web Services(AWS) to automatically acquire and 

preprocess Sentinel-1 satellite images of South Korea, followed by the use of AI deep learning models 

to detect water bodies in (near) real-time. Considering that flood-prone area of Korea typically occur 

along small streams, we adopted Multitask learning in medium-resolution (20m) Sentinel-1 images to 

detect fine rivers. By assigning two tasks (water body detection and the extraction of river embankment 

centerlines) to two decoders sharing a single encoder, we enhance the detection rate of small streams. 

The detected water bodies are compared against geographic information databases, such as those for 

river embankments and reservoir areas, to classify flood-affected regions. The satellite images and 

analyzed results are automatically transmitted to the web-based visualization system (Satellite Current 

View; SCV). SCV also provides additional spatial data, including roads, bridges, urban planning maps, 

and land use maps, to offer further information on disaster-affected areas. We have analyzed and 

provided Sentinel-1 images of actual flood events in Korea, especially 2020 and 2023 flood events. 

Additionally, high-resolution SAR images captured by ICEYE and Umbra are also used to analyze 

flood-affected areas in Korea and are visualized through SCV. 
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Introduction  

Human-induced climate change is increasingly exacerbating extreme weather events, 

notably episodes of intense rainfall. These rainfall events are marked by substantial 

precipitation over a short period, often surpassing the environment’s natural capacity to 

absorb or manage the resulting influx of water. The disaster management cycle is composed 

of four stages: mitigation, preparedness, response and recovery(Altay & Green III, 2006). 

With the growing frequency and unpredictability of extreme rainfall events, the response 

and recovery stages within the disaster management cycle are becoming increasingly 
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critical. These extreme rainfall patterns necessitate the (near) real-time identification of 

affected areas to support decision-making and minimize damages.  

As an active microwave sensor, Synthetic Aperture Radar (SAR) penetrates clouds with its 

own energy and detects the reflected signals. This capability allows SAR to operate under 

all weather conditions, making it highly suitable for continuous disaster monitoring, 

particularly in adverse weather and cloud-covered environments. SAR is highly sensitive to 

the roughness of surfaces. Flat surface reflects radar signals away from the sensor, resulting 

in low backscatter. In contrast, rough surface has higher backscatter and appears brighter in 

SAR imagery. As the inland water has usually smooth surfaces, we can monitoring detect 

flood occurrences and their extent.  

However, for real-time analysis of satellite images and effective disaster response, the 

manual interpretation of SAR data is not feasible due to the need for immediate decision-

making. As a result, the development of an automated SAR-based flood monitoring system 

is essential to support disaster management agencies. The automated flood monitoring 

system includes acquiring and preprocessing SAR images, detection of water areas, and 

providing near-instantaneous updates on flood extent with geospatial data.  

In this study, we employed Amazon Web Services (AWS) to construct the automated end-

to-end real time web-based flood monitoring system. AWS provides flexible high-

performance computing capabilities for processing massive satellite images through the 

deployment of cloud-based virtual machines, which enables a robust technological 

foundation for rapid image acquisition and analysis.  

Given that flood-prone areas in Korea are typically located along smaller rivers, we adopted 

a multitask learning-based AI model to automate water detection. The model aims to both 

water area detection and the river embankment centerline extraction with two decoders 

sharing one encoder, which enhances the accuracy of small river detection. After water area 

analysis, the result automatically visualized in web-based visualization system (Satellite 

Current view; SCV1). As SCV provides additional geospatial data including land use maps, 

roads, we could extract extra information on disaster-affected areas. We analyzed Sentinel-

1 images captured in Korea during heavy rain season. Additionally, high-resolution SAR 

images by Umbra is also analyzed and visualized through SCV. 

 

Literature Review  

                                                           
1 https://scv.snu.ac.kr/  

https://scv.snu.ac.kr/
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In recent years, advancements in remote sensing technology have significantly enhanced 

disaster mapping capabilities, allowing for more efficient monitoring and management of 

natural disasters. NASA’s Disasters Mapping Portal2(Lucey et al., 2021) is a prominent 

system that integrates remote sensing data from sources such as NASA, NOAA, and the US 

Geological Survey, offering near real-time tracking and analysis of environmental 

conditions, particularly during events such as hurricanes, floods, and wildfires. The 

platform's GIS-based functionality enables users to visualize disaster impacts and track 

recovery efforts. Additionally, the United Nations Platform for Space-based Information 

for Disaster Management and Emergency Response(UN-SPIDER) 3 (Zollner, 2018) 

platform has made strides in providing space-based information for disaster management, 

especially in aiding developing countries with disaster risk reduction and emergency 

response. This platform facilitates access to satellite data for hazard mapping, risk 

assessments, and ongoing monitoring, making space-based technologies more accessible to 

governments and relief organizations globally.  

If we limits the disaster to flood, there are several interactive web maps for flood monitoring. 

Dartmouth Flood Observatory provides the Dartmouth Flood Observatory inundation 

maps(https://floodobservatory.colorado.edu/index.html)(Kettner et al., 2021) based on 

optical satellite imagery(MODIS) with event-based Sentinel-1.This map shows active 

floods comparing with historic flood record. Similarly, NASA also map MODIS NRT 

Global Flood Product(MCDWD)4(Policelli et al., 2017), which automatically produces 

floodwater extent of active floods for near-real time based on MODIS optical imagery.  

However, global flood monitoring systems often overlook floods in Korea, as the country’s 

river systems and flood-prone areas are relatively smaller in scale compared to other regions. 

Also, the topography of Korea makes the detection more difficult. Therefore, there is a need 

for flood monitoring that optimized in Korea regions.  

Convolutional Neural Networks(CNN) has demonstrated its powerful feature extraction 

capabilities in SAR water detection(Guo et al., 2022). Many image segmentation AI models, 

including Fully Convolutional Networks(FCN)(Long et al., 2015), U-Net(Ronneberger et 

al., 2015), HRnet(Wang et al., 2020), are applied in SAR water detection and exhibit the 

                                                           
2 https://disasters-nasa.hub.arcgis.com/  

3 https://www.un-spider.org/  

4 https://go.nasa.gov/3OiKtYB  

https://disasters-nasa.hub.arcgis.com/
https://www.un-spider.org/
https://go.nasa.gov/3OiKtYB
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accuracy(Kang et al., 2018; Kim et al., 2021). Especially U-Net, which has U-shaped 

symmetrical architecture, is widely used(Denbina, 2020 #9)(Lalchhanhima et al., 2021; Pai 

et al., 2019; Verma et al., 2021). The encoder path progressively captures high-level features 

through a series of convolutional and pooling layers, while the decoder path performs up-

sampling to recover spatial details and produce pixel-wise segmentation maps. The skip 

connections between corresponding layers of the encoder and decoder paths allow the 

network to retain fine-grained spatial information that would otherwise be lost during the 

down-sampling process. 

 Despite significant progress in water segmentation, detecting smaller streams remains a 

challenge, primarily due to scale imbalances in the segmentation process. To mitigate this 

issue, we propose a multitask learning framework that simultaneously performs water 

segmentation and embankment centerline extraction. Multitask learning involves training a 

single neural network to handle multiple related tasks concurrently, rather than training 

individual models for each task(Zhang & Yang, 2018). This approach enables the network 

to leverage shared information across tasks, which can enhance the overall performance. 

In the field of remote sensing image segmentation, multitask learning is still in its early 

stages. Limited research has been conducted, particularly in areas such as road and 

centerline extraction from optical imagery(Alshaikhli et al., 2021; Lu et al., 2022) and 

Synthetic Aperture Radar (SAR) images(Wei et al., 2021). Previous studies have 

demonstrated the potential of multitask learning in improving segmentation outcomes. For 

example, (Alshaikhli et al., 2021) compared different multitask learning models for road 

and centerline extraction, showing that a one-encoder-two-decoder architecture with an 

attention gate yielded improved predictions. The attention gate helped transfer essential 

features between the encoder and each decoder, contributing to more accurate results. (Lu 

et al., 2022) utilized a cascade multitask framework to simultaneously extract roads, 

centerlines, and edges from optical satellite images. By combining multiscale features with 

the road branch output, and employing topology-aware learning alongside hard example 

mining loss, the model achieved state-of-the-art performance, particularly in complex urban 

environments. Additionally, centerline extraction from SAR images using ordinal 

regression and a novel road-topology loss function demonstrated enhanced network 

connectivity and segmentation completeness by predicting discrete distance labels for 

centerlines(Wei et al., 2021). 
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These studies underline the potential of multitask learning in remote sensing, especially for 

complex segmentation tasks that require more than just boundary delineation, such as 

extracting intricate topological features like centerlines. 

 

Methodology  

a. Sentinel-1 acquisition and preprocessing 

The acquisition of new Sentinel-1 data is available through the Sentinel-1 Registry of open 

data(https://registry.opendata.aws/sentinel-1) on AWS. Sentinel-1 data are updated 

regularly within few hours after they are available on Copernicus OpenHub. When the new 

Sentinel-1 of Korea peninsula are noticed, the GRDH SAR images are automatically 

downloaded and transferred to Amazon Simple Storage Service (Amazon S3) and a trigger 

for analysis is generated.  

 

b. Multitask learned SAR water detection AI model  

We utilized Synthetic Aperture Radar (SAR) imagery from the freely accessible Sentinel-1 

satellite, in Interferometric Wide (IW) mode High-Resolution Ground Range Detected 

(GRD-H). To minimize the impact of topographic variations, we applied radiometrically 

terrain-corrected Gamma naught VH, VV polarizations, and local incidence angles, which 

served as input layers. The label dataset was derived from the Landcover Map provided by 

the Ministry of Environment of South Korea and was synchronized with the corresponding 

aerial orthophotos to ensure accurate ground-truth data. In total, 93 Sentinel-1 images were 

used to construct 4,056 patches training dataset. For centerline label we obtained shapefiles 

of river embankments and reservoirs from the National Geographic Information Institute. 

A Geographic Information System (GIS) tool was employed to extract the centerlines. 

Figure 1 depicts the three components of the training dataset: SAR input images, segmented 

water labels, and river embankment centerlines.  
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Figure 1: The examples of training dataset: (from top to down) SAR, water label, 

centerline label. 

 

For water detection, we propose a dual-decoder U-Net architecture capable of performing 

both centerline extraction and waterbody segmentation using satellite imagery. The model 

is composed of an encoder and dual decoders, enabling simultaneous boundary and area 

prediction with enhanced precision. The encoder extracts multi-scale feature maps from the 

input image by progressively downsampling the spatial dimensions while increasing the 

feature representation. It consists of five convolutional blocks, each followed by max 

pooling. Each convolutional block comprises two 3x3 convolution layers, batch 

normalization, and ReLU activation. As we move deeper into the encoder, the number of 

channels increases, allowing the network to capture more complex and abstract features. 

The proposed U-Net model includes two separate decoders: a "centerline decoder" for water 

centerline extraction and a "segmentation decoder" for waterbody area segmentation. Both 

decoders employ a U-Net-like upsampling structure, utilizing skip connections to restore 

spatial resolution while combining low- and high-level feature maps from the encoder. The 

Centerline Decoder performs a series of upsampling and concatenation steps, with each 

stage consisting of two 3x3 convolution layers, to progressively reconstruct the spatial 

details. The output layer applies a 1x1 convolution followed by a sigmoid activation 

function to produce the binary centerline map. The Segmentation Decoder, while similar in 

structure to the centerline decoder, introduces an attention mechanism that leverages the 

centerline information from the centerline decoder to guide the segmentation process. 

Specifically, the feature maps from the encoder are multiplied with the output of the 

centerline decoder to refine the segmentation prediction. The final output of the 
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segmentation decoder is generated using a 1x1 convolution followed by a sigmoid 

activation function, producing the segmented water area.  

Each decoder is optimized with a distinct loss function. For the centerline decoder, we 

employ Binary Focal Cross-Entropy loss, while Binary Cross-Entropy loss is applied to the 

segmentation decoder. The loss of segmentation decoder are three-times weighted to 

balance the contributions with stable training.  

 

 

Figure 2: The architecture of multitask water segmentation framework, which is composed 

of the water segmentation decoder and the embankment centerline extraction decoder. 

 

c. Visualization of Flood monitoring with web-based Satellite Current View(SCV) 

After the trigger of new Sentinel-1 images acquisition generated, end-to-end Flood 

monitoring function is activated through AWS Lambda. AWS Lambda is a serverless 

computing service with event-driven execution. New Sentinel-1 images are radiometrically 

calibrated and geometric corrected and produced radiometrically terrain-corrected Gamma 

naught VH, VV, and the local incidence angle. The water detection using AI model 

described in section b is activated on the preprocessed Sentinel-1 images. The output of 

water detection model is changed into integer RGB format and automatically delivered to 

the SCV server, where the event images are visualized and could be compared with 

geospatial data.  
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Figure 3. The automatic water detection results visualized through Satellite Current 

View(SCV) of Sentinel-1 SAR images acquired during July, 18 – 23, 2023. 

 

 

Figure 4. The example of geospatial layers(e.g.urban plan map) with the result of water 

detection result.  

 

Results and Discussion  

To validate the multitask learning model, we compared the dual decoder U-Net with the 

original U-Net model. The training dataset, consisting of 4,056 patches which are cropped 

to a resolution of 256x256 pixels, is split into training, validation, and test sets using a ratio 

of 81:9:10. For each Gamma naught VH and Gamma naught VV, we constrained the 
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amplitude value from 0 to 0.5 and normalized them in to [0, 1]. The local incidence angle 

band is also constrained into [0, 90]. 

The model is trained using the Adam optimizer with a learning rate schedule based on 

Cosine Decay Restarts. The initial learning rate is 1e-3 with periodic restarts at intervals of 

100 steps, a multiplicative factor of 0.9 for learning rate decay, and an alpha value of 1e-7. 

This cosine decay schedule allows the learning rate to decrease progressively over the 

training period, improving model convergence and overall performance. The He uniform 

variance scaling initializer is applied for every Convolutional layer. A batch size of 64 is 

used, and the model is trained for a maximum of 1000 epochs. To mitigate overfitting, early 

stopping is applied when there is no improvement in validation loss for 10 consecutive 

epochs. Additionally, the model's weights are reverted to the minimum validation loss 

model during training. A ten-core PC with 40 Intel(R) Xeon(R) Silver 4210R CPU @ 

2.40GHz CPU and two GTX 3090 GPUs is used for both training and testing. 

Three widely used evaluation metrics are employed: Precision, Recall and F1-score(Sasaki, 

2007 #21). Three metrics are computed based on the confusion matrix, which has True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). Precision 

measures how many of the positive predictions made by the model are actually correct. 

High Precision means that when the model predicts a positive class, it’s often correct. Recall 

measure how many actual positive cases the model correctly identified. High recall means 

the model is good at identifying all the true positive cases, though it might contain more 

false positives. The F1-score is the harmonic mean of precision and recall. 

Table 1 shows the performance comparison result between the original U-Net and the 

Multitask-learned U-Net. The F1-score of the original U-Net is 80.825% and the F1-score 

of the multitask-learned U-Net is 87.764%, which is 6.939% increased.  

 

Table 1: Performance comparison of original U-Net and the proposed multitask learning 

U-Net. 

 

 

 

To demonstrate the practicality of the automatic near real-time web-based flood monitoring 

system, the actual operation results of heavy rain season in Korea is shown. In August 9th 

2020, Sentinel-1 captured the flood event that the levee of the Sangju Weir on the Nakdong 

River in South Korea suffered a collapse after heavy rainfall. The collapse of the 

Model Precision Recall F1-score 

Original U-Net 79.981% 82.62% 80.825% 

Multitask learned U-Net 87.96% 88.308% 87.764% 
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embankment led to extensive erosion of the surrounding area including agricultural fields 

and infrastructure. Figure 5 displays the water detection result with the geospatial database 

of road and embankment. We could find the flooded area where the result of water detection 

protrudes from the river embankment.  

 

Figure 5. The water detection result(blue) with the geospatial layers of the road(Policelli et 

al.), embankment(sky blue) and land use plan. The orange circle indicates the flood area by 

the collapse of embankment. 

 

Additionally, SCV also displays the analysis result of high-resolution SAR images by 

Umbra. As these high-resolution SAR images are acquired through order system, we 

separately analyzed and delivered the results to SCV. We ordered five places(Paju, Osong, 

Pyeongtaek, Seosan, Dangin) where were expected to flood during heavy rain in July 15th 

to 20th, 2024. As the weather forecast changed, the detected water pixels were all in inside 

the embankment.  
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Figure 5. The water detection result of Umbra images: (a)Osong (b) Paju (c)Pyeongtaek (d) 

Seosan(e)Dangjin 

 

Conclusion and Recommendation  

In this study, we developed and successfully implemented an automated, near real-time 

flood monitoring system using multitask learning-based water detection on Sentinel-1 SAR 

images. By harnessing AWS’s robust processing capabilities and advanced deep learning 

architectures, we effectively detected water bodies and river embankments, even in flood-

prone areas characterized by smaller streams. The integration of both flood extent detection 

and embankment centerline extraction within a single multitask model proved advantageous, 

improving the detection accuracy of smaller rivers and streams. 

The web-based visualization system (SCV) efficiently disseminates flood information, 

providing essential spatial data for disaster response and planning. The successful 

application of the system during actual flood events in South Korea, including the 

significant 2020 Nakdong River levee collapse and other cases in 2023, demonstrates its 

practical utility in real-world disaster management scenarios. Furthermore, the ability to 

process and visualize high-resolution SAR images from Umbra adds further precision in 

flood detection and analysis. 



                          Asian Conference on Remote Sensing (ACRS 2024) 

Page 12 of 14 
 

This system highlights the potential of combining cloud-based infrastructure with advanced 

AI techniques to support real-time disaster monitoring.  

Beyond the flood monitoring functionality described in this paper, the Satellite Current 

View (SCV) system also automatically uploads a variety of additional analysis results 

utilizing SAR imagery. These include unidentified ship detection, bridge object detection, 

reservoir water level estimation, and ground displacement measurement. While monitoring 

primarily focuses on the Korean peninsula, the system's algorithms have demonstrated high 

accuracy when applied to international case studies. Future research will aim to further 

develop more generalizable algorithms, enabling the system to adapt seamlessly to regions 

beyond Korea, thereby reducing the damage from disasters. 
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