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Abstract: Currently, in many large forest areas, an inventory of tree species has not been conducted 

for a long time. Since sending specialists to vast territories to manually detect updates is expensive 

and inefficient, it has become necessary to develop an approach to automate this process. This article 

proposes an algorithm for refining forest inventory data using the Krasnoarmeyskoye Forestry in the 

Samara region of Russia as an example. Satellite images with a spatial resolution of 10 meters, 

obtained over several years from the Sentinel-2 satellite, served as the reference data. Subsequently, 

images captured on cloudless days within a calendar year were combined into a composite. The 

resulting composite, representing a multi-channel image, was used as a feature vector. These data 

were used to label forest areas and assess the performance of the classifier. However, this digital 

forest management data may be partially outdated and may not reflect the current state of the area. A 

mismatch between the classifier’s results and the assigned labels may indicate either a change in tree 

species in the area or an error in the classifier. This study explores the potential of using a three-

dimensional convolutional neural network (3D-CNN) and the support vector machine (SVM) method 

for updating data on tree species. Initially, these methods were used to create a final classification 

mask for the forest inventory being studied. Based on the classification results (achieving high 

accuracy was not the primary goal of the work), specific features of each classifier that are useful for 

updating forest inventory were identified. Based on these findings, a decision was made to develop a 

strategy that utilizes both approaches. Using this strategy, a technology for selecting priority points 

for ground verification was proposed. The effectiveness of the proposed technology was tested in 

practical field conditions, and the technology demonstrated an advantage over the previously used 

point selection method. 

Keywords: convolutional neural networks, forest inventory data, remote sensing, 

Sentinel-2, temporal analysis 
 
 

Introduction 

At present, the issue of regularly updating forest species data is widespread [4,8,19]. 

Continuously updated data are important for monitoring the behavior of different tree 

species under specific climatic conditions. Sending specialists into the field is a labor-

intensive and costly task due to the vast areas of forest being studied. Moreover, accurate 

species identification in specific areas may require specialized expertise. The task of 

classifying forest areas has improved significantly [1, 9, 10, 12, 18, 20] and become more 

cost-effective since the launch of satellites, particularly Sentinel 2A, 2B, and 2C (since 

2024). Satellite images are freely available and regularly updated (at least every five 

days). Each image is multispectral, containing 13 channels with resolutions ranging from 
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10 to 60 meters. Previous studies have explored the classification of forest species using 

satellite images [13, 16]. However, those studies used higher-resolution images of less 

than 2 meters and did not address the issue of updating the current forest inventory.  

This study explores the possibility of classifying forest species using images with lower 

spatial resolution, as well as monitoring ongoing changes. However, even with a large 

number of satellite images, it is challenging to accurately identify all species within a 

specific forest plot. This difficulty may be attributed to the varying ages, heights, and 

crown densities of different tree species, as well as differences in trees of the same 

species. Additionally, multiple tree species may coexist within a single plot, further 

complicating the identification and clustering process. Therefore, this study sets a more 

practical goal: to detect forest areas that have likely changed compared to the most recent 

inventory data. 

When studying an area, there is no certainty that the annotated data aligns with the current 

forest inventory due to possible updates in forest species composition. Therefore, the main 

objective of the developed classification model is to update information on the current 

species. Changes in forest species can occur when one species replaces another, due to 

forest fires, or cuts, or other natural events. This study primarily focuses on situations 

where the classifier's predictions differ from the available archival inventory data for a 

given plot. In cases of such discrepancies, it is logical to do some fieldwork to determine 

the current tree species. 

If the existing data matches the classifier's results, it may suggest either that the forest in 

the given area has remained unchanged or the classification model mistakes. This 

ambiguity is important to consider when analyzing the results. The goal of the study is to 

develop a technology involving machine learning methods that helps reduce the time and 

financial costs of updating inventory data. 

This approach was previously investigated in our study [2], where the classification model 

was based on a support vector machine (SVM). Field testing demonstrated that the 

proposed method can effectively detect changes in forest composition; however, it often 

makes mistakes and requires improvement. Additionally, the mentioned study provided 

practical recommendations for using the classification model to select forest areas that 

should be prioritized for inspection. 

In the present study, we continued the work initiated in [2]. First, we applied a different 

classification model based on three-dimensional convolutional neural networks and 

compared its performance with the SVM approach. Second, we explored various methods 
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for utilizing classification models, including the joint use of both models, to select areas. 

This approach allowed us to enhance the accuracy of detecting changes in the terrain. 

Features of the Area  

The proposed model was developed to address the problem of forest species classification 

using multi-temporal Earth remote sensing data. The Krasnosamarskoye forestry area, located 

in the Kinel district of the Samara region, was selected as the study site (see Fig. 1). The 

remote sensing data for tree species classification were composites created from cloud-free 

Sentinel-2 images of the specified area for each year from 2020 to 2023. Multispectral 

images were combined into composites corresponding to their respective years to provide 

more information for analysis. As a result, four composites were created, consisting of 200, 

310, 430, and 450 spectral channels, respectively (see Table 1). The number of channels in 

each composite depended on the number of favorable (cloud-free, snow-free) days available 

for imaging in a given year. During the combination process, no dimensionality reduction 

was applied to avoid losing potentially important information for the classifier. 

Table 1: Dimensions of the Composites. 

Year Number of Channels 

2023 310 

2022 200 

2021 430 

2020 450 

Forest inventory in this territory was conducted in 2013-2014. The area was divided into 

3800 forest plots. Each plot is characterized by relative homogeneity in terms of soil 

conditions and vegetation. Our database contains the following semantic data for each plot: 

species composition, indicating the percentages of each forest species (in multiples of 10%), 

crown density, and average tree height. In total, nine species grow in the forestry: birch, elm, 

oak, willow, maple, aspen, pine, poplar, and ash. 

The ground truth mask was created at a 10-meter resolution, matching that of the Sentinel-2 

satellite images. The dominant species in the plot corresponding to a given pixel was chosen 

as the class label for each pixel. In addition to the nine forest species classes, the following 

classes were also included: "water surface", "burnt areas and open spaces," and "buildings 

and roads." 
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A portion of the forestry pixels (a total of 833,475 points) was selected for training the 

classification models and analyzing their performance. The dominant species in the selected 

plot points accounted for at least 80%. The resulting ground truth includes 33% pines, 22% 

categorized as “burnt and cleared areas” ,17% oak, and 13.7% birch. The remaining six 

classes are represented in smaller quantities, with species such as elm, ash, poplar, and 

willow each comprising less than 1.5% of the total sample. Table 2 presents the complete 

counts of instances for each class in the ground truth mask. 

 

Figure 1: Tax data of Krasnosamarsky Forestry. 

A Baseline Model Based on 3D-CNN for Hyperspectral Image Classification 

The combination of multiple channels from multispectral images makes the resulting 

composite comparable in the number dimensions and the length of spectral dimension to 

hyperspectral images. Previous research has already been conducted to determine the best 

algorithm for forest species classification [3, 5, 11, 14, 15, 17] using hyperspectral images. 

For instance, article [11] presents studies on the classification of hyperspectral forest species 

data based on images from UAVs. In that study, hyperspectral data obtained through aerial 

imaging were used as the feature vector. Several classification algorithms were considered 

for this task, but the method utilizing a three-dimensional convolutional neural network (3D-

CNN) yielded the best results. The following criteria were used to evaluate the classifier's 

performance: Accuracy, Recall, Precision, and F1-score. These metrics quantify how closely 
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of the classifier's predictions match actual field inventory. The training was conducted on 

images with 250 spectral channels, covering wavelength ranges of 401.32–717.49, 723.72–

892.05, 1006.17–1077.20, 1197.67–1329.06, and 1471.22–1776.93 nm. 

The essence of the method proposed in [18] lies in the simultaneous extraction of spectral and 

spatial features using three-dimensional convolution (3D-CNN). Unlike 1D-CNN, which 

produces one-dimensional feature vectors, or 2D-CNN, which generates two-dimensional 

feature matrices, the convolutional layers in 3D-CNN create feature cubes. This allows us to 

extract more complex features than those manually created. 

The structure of the network used in [11] consists of four convolutional layers with three-

dimensional kernels, followed by two linear layers. The convolutional layers are used to 

extract spectral-spatial features from the input data, and the linear layers perform the final 

classification of these features.  

The main advantage of this approach is its ability to use spatial characteristics for 

classification. Consequently, specific clusters with the same tree species will be identified 

when creating the species prediction raster. However, if multiple species are present within 

the same area, this may lead to classification errors. 

The training process of the classifier was carried out using the AdamW optimizer with 

parameters β1=0.9, β2=0.999 and 𝜖 = 1𝑒 − 8, with a weight decay of 𝑤𝑑 = 0.01 and a 

learning rate of 𝑙𝑟 = 0.001. The batch size for training was 64 objects, and the training 

process was limited to no more than 100 epochs. After training, the result from the best epoch 

based on the F1 metric was saved. 

3D-CNN Model for Multi-Temporal Sentinel-2 Composites 

a. Cha Since the resulting composites are composed of multiple multispectral images, 

each of which (see Table 1) can be treated as a single hyperspectral image, the structure of 

the 3D convolutional neural network was used as the basis. It is important to note that the 

model should be trained separately on each composite, as tree species may vary from season 

to season and the input data of different years do not fit each other.  

Compared to the baseline model, adjustments were made to the stride, output linear layer 

sizes, and the number of channels in the input data. Below we present a detailed structure of 

the modified network. Input data is a collection of patches of size 1xNx9x9, where N is 
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number of spectral channels. The presented network corresponds to N=310 (the composite of 

2023). 

Conv 1 Kernel (10x3x3)  

 Stride 3x1x1 

 Output 32x101x7x7 

Conv 2 Kernel (5x3x3)  

 Stride 3x1x1 

 Output 64x33x5x5 

Conv 3 Kernel (3x3x3)  

 Stride 1x1x1 

 Output 64x31x3x3 

Conv 4 Kernel (3x3x3)  

 Stride 1x1x1 

 Output 64x29x1x1 

Linear 1 Input: 1x3712 

  Output: 1x128 

Linear 2 Input: 1x128 

   Output: 1x13 

Through experimentation, it was determined that the best classification results, according to 

the accuracy metric, were achieved with the following training parameters: weight decay 

𝑤𝑑 =  0.006,  learning rate 𝑙𝑟 =  1𝑒 − 05, batch size 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 =  64, 𝑒𝑝𝑠 =  1𝑒 − 06. 

b. Data Preparation  

The territory of the Krasnosamarsky forestry is characterized by a highly uneven distribution 

of areas corresponding to different forest species. As seen in Table 2, the number of pixels 

dominated by pines is 1,611 times greater than the number of pixels dominated by elm and 67 

times greater than the number dominated by poplar. When training a classification model on 

such imbalanced data, there is a risk of shifting the focus toward the most common species 
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while achieving low recognition accuracy for rarer species. Therefore, during the research, 

we tested two methods for preparing the training dataset.  

The first method involved retaining the original species proportions in the training dataset 

with training conducted on 40% of the pixels from each class.   

The second method aimed to create a more balanced dataset. For that, several conditions have 

been introduced to improve the balance between classes when forming the training dataset: 

 The number of elements in any class should not exceed 10,000 objects; 

 The number of elements in a single class should not exceed 70% of the total 

instances of that class in the composite; 

 Augmentation methods were applied to classes with a small number of elements 

(precisely, rotations of 90 degrees and mirroring). 

The resulting number of instances for each class used to train the models is shown in Table 2. 

Table 2: The composition of the Sample After Augmentation. 

 

Model Performance Analysis 

Tree Name Original Sample 
Training Samples 

(Method 1)  

Training Samples 

(Method 2) 

Birch 56981 22 793 10000 

Elm 172 69 480 

Oak 143500 57 400 10000 

Willow 4261 1 705 10000 

Maple 9751 3 901 10000 

Aspen 114361 45 745 10000 

Pine 277212 110 885 10000 

Poplar 4132 1 653 10000 

Ash 3237 1 295 9060 

Water Bodies 27972 11 189 10000 

Burnt and cleared 

areas 
190154 

76 062 
10000 

Buildings 1742 697 4876 

Total 833475 333394 104416 
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a. Classification Accuracy for different years 

It is necessary to analyze in detail the quality of classifier training under various 

conditions to evaluate their effectiveness. For now, we will set aside the potential 

inaccuracies of the ground truth mask. The selection of strategies for detecting changed 

forest areas will take place after the training process is completed. 

To begin, a comparison of classification quality for different composites (2020-2023) was 

conducted. This analysis may help identify the dynamics of changes in classification 

quality over time and determine the most suitable season for training the model. 

For model training, the resulting dataset was randomly split into training and validation 

sets in an 85% to 15%. Testing was conducted on the entire set of labeled data, including 

data from the training set. This approach is essential to obtain a complete class 

distribution mask, which allowing for the assessment of spatial relationships between 

different areas. Including approximately 10% of the original training data in the test 

sample does not significantly affect the overall accuracy of the classifier's performance. 

The results for composites from different years are presented in Table 3. In this table, 

Accuracy is used as the metric for classification quality. The data are provided for two 

methods of forming the training dataset. 

Table 3: Model Performance by Year. 

Year Number of Channels Accuracy (3D-CNN) 

2023 310 88.68 

2022 200 86.5 

2021 430 87.57 

2020 450 87.65 

 

As we can see, there is no clear trend of deteriorating classification quality over time, 

indicating a growing deviation of the actual situation from the forest inventory data of 2013-

2014. Apparently, the changes over the three years examined were not significant in scale. It 

can also be noted that the differences in classification accuracy are small and do not align 

closely with the dimensionality of the feature space. 

b. Combining Different Seasons in one model 

Since of each classifier’s result is a probability vector for all classes, it was hypothesized that 

the results could be improved by combining the probability vectors obtained for each 
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composite. The final probability vector can then be generated by combining the existing 

vectors, taking into account the selected weight coefficients: 

𝑃 =  ∑ 𝑝𝑖

2023

𝑖=2020

𝛼𝑖, 

where 𝑝𝑖 is probabilty of belonging to a class, 𝛼𝑖 is the significance coefficient of the 

composite (∑ 𝛼𝑖
2023
2020 = 1), and 𝑖 is a year. After grid optimization with step Δ = 0.1, we 

found that the overall accuracy does not change significantly when varying 𝛼𝑖. The highest 

level achieved during optimization is 89.67. So the combination of 4 models adds 1% to the 

classification accuracy, which means that the increase is quite insignificant. 

b. Detailed Evaluation of Classification Accuracy and Comparison with the 

SVM-based Classification Model 

A detailed analysis was conducted on the results obtained by combining the outputs of 

several composites. Table 4 presents the confusion matrix of the classification results, while 

Figure 2 shows the ROC-AUC curves, clearly illustrating the relationship between the 

proportion of correctly and incorrectly classified pixels. 

Table 4: Confusion Matrix for Territory Classification (3D-CNN). 
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Ground Truth Data  
 

Birch Elm Oak Willow Maple Aspen Pine Poplar Ash 
Water 

Surface 

Open 

Spaces 

Buildings 

and 

Roads 

Precision 

Birch 53138 24 86 0 0 1887 10364 0 0 181 5542 2 0.746 

Elm 0 10 0 0 0 0 0 0 0 0 0 0 1.0 

Oak 40 3 138273 0 2 2576 2287 1 0 103 2332 5 0.95 

Willow 0 35 16 4248 0 83 147 3 0 25 707 0 0.807 

Maple 52 5 582 2 9279 421 1648 1 0 23 627 0 0.743 

Aspen 414 10 1781 0 0 98839 7961 0 0 40 7581 0 0.848 

Pine 1840 38 1267 4 9 3647 243418 0 0 35 7633 0 0.943 

Poplar 0 1 124 1 0 22 148 4122 0 10 261 0 0.879 

Ash 151  17 0 0 0 202 0 3234 0 56 0 0.884 

Water 

Surface 
108 6 999 4 0 287 112 5 0 27405 1927 0 

0.888 

Open 

Spaces 
1230 40 346 2 3 6596 10913 0 3 149 163415 1 

0.894 

Buildings 

and 

Road 

8 0 9 0 0 3 12 0 0 1 73 1734 

0.942 

Recall 0.933 0.058 0.964 0.997 0.998 0.864 0.878 0.998 0.999 0.979 0.859 0.995 0.897 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 10 of 18 
 

 

Figure 2: ROC-AUC curves for each class. 

For comparison, a classifier based on SVM was trained under similar conditions, as 

previously described in work [2] for the same task of updating forest inventory data. This 

classification technology is detailed in works [2, 6, 7] and includes a procedure for spatial 

post-processing of classification results. As a result, a classification accuracy of 89.25% was 

achieved, which is very close to the results obtained by the model based on 3D-CNN. 

Table 5 presents the confusion matrix for the SVM-based model. This matrix indicates that, 

despite the similar classification accuracy, the errors in individual classes between the two 

models differ significantly. This discrepancy may provide an opportunity to use both models 

in conjunction, as will be demonstrated later. 

Table 5: Confusion Matrix for Territory Classification (SVM) 
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Truth Data  
 

Birch Elm Oak Willow Maple Aspen Pine Poplar Ash 
Water 

Surface 

Burnt 

and 

Open 

Spaces 

Buildings 

and 

Roads 

Precision 

Birch 48520 0 73 0 5 1477 4203 0 95 166 2442 0 0,852 

Elm 0 107 0 0 5 0 38 0 0 0 22 0 0,622 

Oak 174 0 136508 3 381 2835 1390 97 6 835 1265 6 0,951 

Willow 1 0 12 3322 80 74 62 91 0 195 424 0 0,780 

Maple 64 0 360 18 7773 276 712 2 5 222 319 0 0,797 

Aspen 1503 0 2410 90 173 98222 4471 9 0 266 7217 0 0,859 

Pine 7350 0 2057 37 619 9004 245758 70 119 167 12013 18 0,887 

Poplar 4 0 110 49 23 46 29 3559 0 99 213 0 0,861 

Ash 72 0 5 0 1 10 62 0 2989 13 85 0 0,923 

Water 

Surface 
339 0 486 52 84 295 132 96 0 24228 2259 1 

0,866 

Burnt 

and 

Open 

Spaces 

4211 0 1909 259 283 9959 9802 92 10 1611 161999 19 

0,852 

Buildings 

and 

Road 

10 0 38 0 0 39 28 0 0 17 506 1104 

0,634 

Recall 0,779 1,000 0,948 0,867 0,825 0,804 0,922 0,886 0,927 0,871 0,858 0,962 0,892 
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Figure 3 displays the maps of classification results obtained using two different models. It is 

evident that there are significant visual differences between the two masks. 

  

Figure 2: Classification results of the forestry area using 3D-CNN (top) and SVM 

(bottom). 

It should also be noted that up to this point, we have considered models trained on a balanced 

training dataset formed using Method 2. Additionally, models based on a dataset formed 

using Method 1 (with 40% of training examples from each class) were also trained. This 

significantly increased the training time, but the classification accuracy also improved. For 

the SVM-based model, accuracy reached 96.78%. However, it is important to note that this 

value may appear inflated due to the substantial volume of training data and the evaluation of 

classification accuracy, which includes training examples. There is a potential issue of 

overfitting. 

However, as noted above, the main criterion in this work is the ability of the model and the 

data analysis technologies using it to detect changes in the species composition of the forest 

from satellite images. The quality metrics of the model are therefore purely secondary. Thus, 

we will now turn to discussing how to apply the obtained models to address the final task. 

Application of Trained Models for Detecting Changes in Forest Data 

a. Evaluation of Change Detection Quality 

We will denote 𝑐𝑖𝑛𝑣, 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑐𝑓𝑖𝑒𝑙𝑑 as the class label value at a certain validation point 

according to the forest management data, according to the model's prediction, and according 

to ground truth verification, respectively. The classification of the target area is carried out 

based on the species classifier when changes are detected. Subsequently, the selection of 

preferred points for verification is conducted according to a certain procedure. The candidate 

points are those for which 𝑐𝑖𝑛𝑣 ≠ 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡. Next, let’s assume that a certain point has been 

selected for ground verification. A change is considered to be successfully detected if 𝑐𝑖𝑛𝑣 ≠
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𝑐𝑓𝑖𝑒𝑙𝑑 although it is not necessary for the model's prediction at this point to be correct.As a 

result of the experiment to select the significance coefficients α𝑖 the following results were 

obtained: 

We will use the following metrics to assess change detection quality: 

 the proportion of Type I errors (false positive predictions): 

𝑝1 =
∑ (𝑐𝑖𝑛𝑣(𝑖) ≠ 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖))⋀(𝑐𝑖𝑛𝑣(𝑖) = 𝑐𝑓𝑖𝑒𝑙𝑑(𝑖))𝑁

𝑖=1

∑ (𝑐𝑖𝑛𝑣(𝑖) ≠ 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖))𝑁
𝑖=1

, 

where 𝑖 is  the index of the point, 𝑁 – s the total number of points. 

 the proportion of Type II errors (false negative predictions): 

𝑝2 =
∑ (𝑐𝑖𝑛𝑣(𝑖) = 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖))⋀(𝑐𝑖𝑛𝑣(𝑖) ≠ 𝑐𝑓𝑖𝑒𝑙𝑑(𝑖))𝑁

𝑖=1

∑ (𝑐𝑖𝑛𝑣(𝑖) = 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖))𝑁
𝑖=1

. 

 Accuracy calculated between 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and 𝑐𝑓𝑖𝑒𝑙𝑑. This metric is secondary, but 

nonetheless useful. 

b. Preliminary Verification on Previously Checked Points 

For the initial analysis of change detection quality using the trained models, points that had 

already been reviewed in 2023 during the preparation of article [2] were used. These points 

were not selected based on the predictions obtained in this work. The criteria for selecting 

points also differed (in the next subsection, we will outline the criteria used in this study). 

Nevertheless, this set of points will provide us with a preliminary understanding of the 

characteristics of using the examined models. It consists of 36 points, of which the species 

actually changed in 21 points (𝑐𝑖𝑛𝑣 ≠ 𝑐𝑓𝑖𝑒𝑙𝑑).  

The results of the evaluation of the two models trained on balanced data are presented in 

Table 6. As can be seen from the first two rows, the classification accuracy for this set of 

points is quite low. Both models showed similar accuracy values; however, they differ 

significantly in the proportions 𝑝1 and 𝑝2. This provides a basis to apply both models and 

compare the obtained predictions to form a final decision. In rows 3-4 of Table 6, the metrics 

for two decision-making strategies are indicated: checking for discrepancies with the original 

class for either model and checking only if both predictions do not match the original class. 

As shown in the table, the first strategy significantly reduces the proportion of misses, while 

the second reduces false positives. Therefore, depending on the application conditions, one of 

these strategies can be practically followed. 
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Table 6: Comparison of Different Models in the Task of Detecting Forest Changes  

(Point Selection and Field Surveys Conducted Earlier). 

Classification Model 𝒑𝟏, % 𝒑𝟐, % Accuracy, % 

3D-CNN 47.62 26.67 61.11 

SVM 14.29 66.67 63.89 

Two models trained on a balanced dataset: 

checking for any discrepancies with the 

original class. 

4.76 73.33 66.67 

Two models trained on a balanced dataset: 

checking only if both predictions do not match 

the original class. 

57.14 20.00 58.33 

 

c. Technology for Selecting the Most Priority Points for Detecting Forest 

Changes 

Considering all the previously obtained results, the following point selection technology for 

detecting changes was chosen and applied in practice based on the two models: 

1) The predictions of both models are used. At the initial stage, only those points for 

which both predictions do not match the original class are retained for further 

consideration. 

2) We consider the plots as a whole and evaluate the percentage of pixels in the plot  

𝑝𝑖𝑛𝑣 classified into the class corresponding to the dominant species of the plot. 

3) Among the remaining pixels in the plot, we identify the most common class in the 

prediction mask that does not correspond to the dominant species of the plot (referred 

to as the "secondary class") and calculate the percentage of such pixels 𝑝𝑜𝑡ℎ𝑒𝑟. 

4) We discard plots where the "secondary class" is not a forest species, as we are 

specifically interested in changes in the species composition of the forest, rather than 

clearings and burns. 

5) Among the remaining plots, we discard those for which 𝑝𝑜𝑡ℎ𝑒𝑟 ≤ 𝑇𝑜𝑡ℎ𝑒𝑟 and 𝑝𝑖𝑛𝑣 −

𝑝𝑜𝑡ℎ𝑒𝑟 ≥ 𝑇𝑑𝑖𝑓𝑓, meaning we only retain plots where the "secondary class" is 

sufficiently prevalent. 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 14 of 18 
 

6) The area of the connected segment within the plot, where all pixels are classified as 

the "secondary class," is calculated. If it does not exceed the threshold 𝑇𝑎𝑟𝑒𝑎, the plot 

is discarded. 

7) In each of the remaining plots, we find the point that is closest to the centroid of the 

pixels classified by the model as the "secondary class" and is also classified into this 

class. 

In addition, another method for detecting changes was tested separately using a single model 

trained on an unbalanced dataset. Due to the high accuracy rating for this case and, 

consequently, a lower number of errors, it was decided not to further reduce the number of 

candidate points by intersecting the two models. Therefore, this selection method will be 

practically identical to the first one, with the only difference being the absence of point 1 

from the list above. 

To analyze the effectiveness of the proposed technology, 20 points were selected in the field 

and subjected to ground verification. The points were selected with threshold values of 

𝑇𝑜𝑡ℎ𝑒𝑟 = 0.2, 𝑇𝑑𝑖𝑓𝑓 = 0.6, 𝑇𝑎𝑟𝑒𝑎 = 0.25 ℎ𝑎. The results of the verification are reflected in 

Table 7. As can be seen from the data presented, only 2 out of 20 points were selected 

incorrectly, resulting in a Type I error of 10%. The Type II error is zero, as we did not select 

points for ground verification where the classifier did not detect changes. 

It is easy to see that the metrics in Table 7 are much better than those in Table 6, even though 

they are based on the same models. The improvement in detection quality is solely due to the 

technology for selecting verification points proposed in this subsection. Undoubtedly, the 

quality of detecting changes in forest composition at points selected using the proposed 

technology will decrease as the number of these points increases, since relaxing the threshold 

constraints (𝑇𝑜𝑡ℎ𝑒𝑟, 𝑇𝑑𝑖𝑓𝑓, 𝑇𝑎𝑟𝑒𝑎) will be necessary to select a larger number of points. 

However, the results achieved on the examined sample suggest that the proposed technology 

significantly reduces the labor intensity involved in the task of partial updating of forest 

inventory data. 

Table 7: Classifiers Performance. 

Points Selection 𝒑𝟏, % 𝒑𝟐, % Accuracy, % 

Two models trained on a balanced dataset: checking only if 

both predictions do not match the original class. 
7.14 0 78.57 
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One model trained on an unbalanced dataset. 16.67 0 66.67 

Both options combined 10 0 75 

 

 

Conclusions 

This study investigated the potential of efficiently and accurately updating forest inventory 

data using images obtained from Sentinel-2 satellites. The use of various classification 

models and different approaches for their application in detecting forest changes was 

explored. Since this task has already been addressed in previous works [2, 6], we will 

highlight the main results achieved in this article. 

1) The classification model based on 3D-CNN did not significantly outperform the 

SVM-based model when evaluating the quality of forest species classification on 

archival forest management data.  

2) The joint use of two models (based on 3D-CNN and SVM) for selecting points for 

ground verification improves the quality of selection compared to using a single 

model. 

3) The use of satellite images from four seasons during model training did not lead to a 

significant increase in classification quality metrics; therefore, it can be concluded 

that a single seasonal composite is sufficient overall. 

4) It is not possible to draw a definitive conclusion about which training dataset yields 

better results in assessing forest changes: balanced or unbalanced. For the balanced 

dataset, the accuracy of the model's predictions compared to archival inventory data is 

higher; however, both options performed well when selecting points for detecting 

forest changes. 

5) The proposed technology for selecting priority points for ground verification has 

demonstrated high effectiveness and offers advantages compared to the technology 

previously used [2]. 
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