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Abstract: Surveying techniques are evolving from traditional methods to modern approaches, 

prominently featuring the Global Navigation Satellite System (GNSS), which enhances efficiency and 

cost-effectiveness. However, real-time applications of GNSS height data face challenges, particularly 

in achieving accurate elevation determination relative to mean sea level datum, essential for various 

geodetic, geophysical, and engineering tasks. In regions like Sri Lanka, surface irregularities hinder 

precise elevation measurements, highlighting the need for a well-defined local geoid model to obtain 

accurate orthometric heights. This study develops a comprehensive geoid undulation model for Sri 

Lanka by integrating Gravity/Orthometric and GNSS/Orthometric undulation data with machine 

learning techniques. Gravity/Orthometric undulation is sourced from the XGM2019e_2159 gravity 

model provided by the International Centre for Global Earth Models (ICGEM), while 

GNSS/Orthometric undulation data is derived from known orthometric and GNSS data. Utilizing a 

Gradient Boosting Regressor (GBR), establish the relationship between gravity and normal 

undulation data. The model is trained on 3,425 control points (80% of the dataset) and tested on 857 

control points (20%). The results yield a root mean square error (RMSE) of ± 0.080m for the training 

dataset and ± 0.085m for the testing dataset, with 97% of test points within a ± 0.200m range. This 

study underscores the effectiveness of machine learning and gravimetric data in enhancing geoid 

undulation model accuracy, indicating that future improvements could be achieved with more precise 

gravimetric data.  
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Introduction  

Surveying techniques have undergone a significant transformation in recent years, 

evolving from traditional methods to modern, technologically advanced approaches. The 

Global Navigation Satellite System (GNSS) has emerged as a pivotal tool in this 

transformation, offering enhanced efficiency and cost-effectiveness in geospatial data 

collection. Despite its many advantages, the use of GNSS in real-time applications for 

height determination poses challenges, particularly in obtaining accurate elevations 

relative to the mean sea level (MSL) datum. This is a critical requirement for various 

geodetic, geophysical, and engineering applications, as precise elevation data are essential 

for infrastructure development, land use planning, and environmental monitoring. 

In regions like Sri Lanka, the determination of accurate orthometric heights is further 

complicated by surface irregularities and complex terrain, which can distort GNSS-based 

height data. The key to resolving this challenge lies in the development of a reliable local 

geoid model. A geoid model defines the shape of the Earth's gravitational potential and 

serves as a reference surface for determining orthometric heights. However, current geoid 

models for Sri Lanka do not provide the level of accuracy required for many high-

precision applications, prompting the need for further improvement.  

The motivation for this study stems from the need to enhance the accuracy of GNSS-based 

elevation measurements in Sri Lanka. Existing global geopotential models, such as 

XGM2019e_2159, provide valuable data, but they may lack the localized precision 

required for applications in regions with unique geophysical characteristics. The objective 

of this study is to develop a comprehensive geoid undulation model tailored for Sri Lanka 

by integrating Gravity/Orthometric and GNSS/Orthometric undulation data. This 

integration is achieved through the use of machine learning techniques, specifically the 

Gradient Boosting Regressor (GBR), to establish a relationship between gravity 

undulation and orthometric heights.  

Literature Review  

The research conducted by Mr. Vipula Abeyaratne on the "Assessment of EGM2008 over 

Sri Lanka" provides valuable insights into the application and effectiveness of the 

EGM2008 geoid model in the Sri Lankan context. The study underscores the critical role 

of validation and quality assessment in geoid modeling, which is essential for ensuring that 

the models accurately reflect the gravitational variations specific to the region. 
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Abeyaratne’s findings suggest that while EGM2008 serves as a useful reference, there are 

opportunities for improvement in its accuracy when applied to Sri Lanka. The article 

emphasizes the necessity for ongoing research and enhanced data collection efforts to 

refine geopotential models. This continuous effort is vital for meeting the diverse needs of 

user communities, including those involved in engineering, environmental monitoring, and 

geospatial analysis. 

The development of a hybrid geoid model for Sri Lanka utilizing global gravity field 

model data is a significant undertaking that combines advanced geospatial techniques with 

local topographical data. In this study, the research aimed to create a more accurate 

representation of the geoid by integrating a reliable Global Geopotential Model (GGM) 

with local measurements. The methodology involved a manual clustering process to 

account for the topographical variations across Sri Lanka. By employing 21 Fundamental 

Bench Mark (FBM) data points, the study ensured that the model was grounded in precise 

local measurements, which is crucial for enhancing the accuracy of the geoid model. To 

interpolate the data, the researchers utilized least squares adjustment and Inverse Distance 

Weighting (IDW) techniques.  

The research conducted in Kuwait aimed at enhancing the accuracy of the local geoid 

model through the application of machine learning techniques to geoid residuals derived 

from GPS and levelling data by utilizing 78 GPS/levelling points. The study incorporated 

the effects of Global Geopotential Models (GGMs) and Residual Terrain Models (RTM) 

to determine geoid undulation. Three machine learning algorithms were employed for 

modeling the geoid residuals: Minimax Probability Machine Regression (MPMR), 

Gaussian Process Regression (GPR), and Multivariate Adaptive Regression Splines 

(MARS). The performance of the interpolation models yielded results of 1.377 m for 

MPMR, and 1.375 m for both GPR and MARS, indicating a high level of consistency 

among the machine learning approaches used. This research contributes significantly to 

the ongoing efforts to build a more accurate geodetic model, which is essential for various 

applications in geodesy, surveying, and related fields. 

The German Combined Quasi Geoid GCG2016 represents a significant advancement in 

geospatial modeling for Germany. It has achieved a high-resolution hybrid model by 

integrating gravity and terrain data with a global geopotential model through spectral 
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combination techniques. The adjustment of the gravimetric quasi-geoid to GNSS/levelling 

points enhances its accuracy, utilizing a correction surface derived from interpolation and 

collocation methods. The estimated overall accuracy of approximately 1 cm underscores 

the model's reliability for various applications in geodesy and related fields. 
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Methodology  

In this research, a comprehensive methodology was employed to enhance the accuracy of 

geoid modelling through the use of polynomial fitting, least squares adjustment, and 

Gradient Boosting Regressor (GBR) techniques. The polynomial fitting and least squares 

adjustment were utilized to establish a foundational model based on the training data, 

allowing for the refinement of the geoid estimates. 

The Gradient Boosting Regressor (GBR) was then applied to predict data, leveraging its 

ability to handle complex relationships within the dataset and improve predictive 

performance. The flow of this methodology is visually represented in Figure 1, which 

outlines the sequential steps taken in the analysis, from data preparation and model 

training to prediction and validation. 

Figure 1: Methodology 
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a. Data Collection:  

For the development of the undulation model, the following data types have been collected. 

• Horizontal control points (East, North and Ellipsoid heights) 

• Vertical control (primary, secondary and tertiary) 

• Gravity Undulation (XGM2019e_2159) 

The research involved the collection of existing main control points, from the Sri Lanka 

National Geodetic Control Network (SLD 99), along with First Order and Second Order 

Level line points. Figure 2 illustrates the distribution of all these points, providing a visual 

representation of their locations across the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Data Distribution 

In the preparation of the Gradient Boosting Regressor (GBR) model and the Hybrid 

Model, gravity undulation data is essential. To obtain this data, the International Centre 

for Global Models (ICGEM) was utilized. Specifically, the model XGM2019e_2159 was 

selected from the ICGEM website to extract gravity height anomaly data. This extraction 

was performed using the regular grid option, ensuring that the data aligns with the 

availability and requirements of the study. The gravity undulation data obtained will play 

a critical role in enhancing the accuracy and reliability of the geoid modelling efforts. 
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b. Data Preprocessing: 

Due to challenges encountered during field verification, the quality of some data points 

was compromised. To address this, gravity undulation values were extracted from the 

gravity undulation surface for 4,635 control points that had GNSS/levelling data. 

Following this extraction, the undulation offset (∆N) was calculated as the difference 

between gravity undulation and orthometric undulation (N - GN). 

 

To facilitate a comprehensive analysis, the orthometric undulation, gravity undulation, 

and undulation offset (∆N) were plotted on a graph. This visualization allows for a clear 

comparison of the different undulation metrics, revealing their variations and 

interrelationships. Figure 3 illustrates this comparison, highlighting the relationships 

between these metrics and providing insights into how the compromised data quality may 

have influenced the results.  

Figure 3: Outliers and Cleared Data Set 

The small spikes and dips in the green line on the graph indicate irregularities where the 

undulation offset (∆N) changes abruptly. These anomalies could be attributed to local 

geological features, measurement errors, or other factors. Notably, all level lines appear to 

align with the road network, suggesting minimal influence from local geological features. 

Therefore, the primary issues likely stem from inaccuracies in the ellipsoid height of GNSS 

observations at the level line points and incorrect Mean Sea Level (MSL) values at the 

control points from the Sri Lanka National Geodetic Control Network (SLD 99). 

Therefore, the spikes identified as irregularities can be considered outliers in the dataset. To 

address this, statistical methods could be applied to determine the mean and variance of the 

dataset. By calculating these metrics and using a 95% confidence level, outliers can be 

effectively identified and removed from the dataset. This process ensures that the remaining 

data is more accurate and reliable for subsequent analysis.  
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After removing the outliers, the offset has been smoothed, resulting in a more stable 

orthometric undulation without irregular up and down variations. The figure 3 illustrates the 

data post-outlier removal, demonstrating a more consistent and refined representation of the 

orthometric undulation. 

c. Methods: 

Polynomial Fitting 

Polynomial fitting involves finding a polynomial function that best fits a set of data 

points, typically through a least squares approach. The polynomial can be of various 

degrees (linear, quadratic, cubic, etc.) based on the complexity of the data and desired 

accuracy. 

N (x, y) =     

 

Hybrid Undulation Model Theory 

The hybrid undulation model was generated using the difference between gravity 

undulation and GNSS/levelling undulation. The difference or the offset (ΔN) is 

considered as the undulation and inputted to the model. The resulting model demonstrated 

a smoother model than the normal undulation model as it exhibited minimal deviation 

values. 

The hybrid model is obtained from gravity geoid model and offset, where gravity 

undulation obtains from XGM2019e model. 

 

Hybrid Model = Gravity Geoid Model (XGM2019e) + Offset 

Orthometric height can be derived from the hybrid model as follows, 

Offset (ΔN) = 𝑁𝐺𝑒𝑜𝑖𝑑 - 𝑁𝐺𝑟𝑎𝑣𝑖𝑡𝑦 

𝑁𝐺𝑒𝑜𝑖𝑑 = 𝑁𝐺𝑟𝑎𝑣𝑖𝑡𝑦 + Offset (ΔN) 

Orthometric Height (h) = Ellipsoid Height (H) - 𝑁𝐺𝑒𝑜𝑖𝑑 

 

Therefore, 

Orthometric Height (h) = Ellipsoid Height (H) – (𝑁𝐺𝑟𝑎𝑣𝑖𝑡𝑦 + Offset (ΔN)) 
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Machine Learning - Gradient Boosting Regressor (GBR) 

Predicting geoid undulation values using machine learning techniques represents an 

innovative approach to geospatial analysis. Machine learning offers powerful tools for 

modelling complex relationships between variables, which can significantly enhance the 

accuracy of geoid predictions.  

Understanding the Relationship 

The relationship between gravity undulation and orthometric undulation is inherently non-

linear. Traditional methods might struggle to capture this complexity, but machine learning 

techniques, particularly Gradient Boosting Regressor (GBR), are well-suited to this task. 

GBR builds an ensemble of decision trees, with each tree aiming to correct the errors of the 

previous one, effectively modelling complex, non-linear relationships. 

Steps in Gradient Boosting Regressor 

1. Initialize the Model: 

The process begins with an initial model, typically a simple constant value that minimizes the 

loss function (e.g., the mean of the target values for regression tasks). 

 

where L is the loss function, yi are the target values, and c is a constant. 

2. Compute Residuals: 

For each subsequent model, the residuals (errors) of the previous model are computed. These 

residuals represent the difference between the actual target values and the predictions made 

by the current model. 

 

where  are the residuals for the m-th iteration,  are the actual target values, and F  

are the predicted values 

3. Fit a New Model: A new decision tree is fitted to the residuals. This new model aims 

to predict the residuals (errors) of the previous model. 
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Where   is the new model fitted to the residuals. 

4. Update the Model: The predictions of the new model are added to the previous model 

with a learning rate (shrinkage parameter) to control the contribution of each tree. 

  

Where  is the updated model,  is the previous model, η is the learning rate, and 

  is the new model. 

5. Repeat: Steps 2 to 4 are repeated for a specified number of iterations or until the 

model converges. Each new model incrementally improves the overall model by 

reducing the errors of the previous models. 

 

d. Data Prepared to Model: 

Finally, after filtering the data, 4,282 data points were selected for processing. Out of these, 

3,425 points were allocated as training data for model development, while the remaining 857 

points were reserved for testing and validating the models. This split allowed for a 

comprehensive evaluation of the models' performance. Using these datasets, three models 

were processed: the Normal Undulation Model, the Hybrid Undulation Model, and the 

Gradient Boosting Regressor (GBR) Model. The training data was used to build and calibrate 

these models, while the test data was employed to assess their accuracy and effectiveness in 

predicting undulation values. This approach ensures that the models are rigorously evaluated 

and optimized for reliable performance. The following figure shows the train data distribution 

and test data distribution. 

Results and Discussion  

Three models were employed for data processing: polynomial fitting and least squares 

adjustment were used for the orthometric GNSS undulation model and the hybrid undulation 

model, while the Gradient Boosting Regressor (GBR) machine learning method was applied 

for the third model. The results obtained for these models include the Root Mean Squared 

Error (RMSE) for both the training and test datasets, which evaluates the models' prediction 

accuracy. Additionally, residual plots were generated for both the training and test datasets to 

visually assess the model's performance and identify any patterns or inconsistencies in the 
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residuals. Finally, predicted undulation plots for the 486,168 grid points were produced, 

providing a comprehensive visualization of the undulation predictions across the entire study 

area. 

Gradient Boosting Regressor (GBR) Model 

In this method, residual values of training and test data varied not exceeding 0.3m. It was 

significantly different from orthometric GNSS undulation model and the hybrid undulation 

model. For the training dataset, the Root Mean Square Error (RMSE) is ±0.080 meters, and 

for the test dataset, it was ±0.085 meters. In the training data, 98% of residuals were less than 

0.2 meters, with 51% under 0.05 meters. Similarly, in the test data, 97% of residuals were 

below 0.2 meters, with 49% under 0.05 meters. Also, all residual values were less than 0.3m. 

The table below shows the residual ranges and data counts for both the training and test 

datasets. 

Table 1: Range of training data & test data 

Training Data Testing Data 

Range Data count Range Data count 

0.0 - 05m 1754 0.0 - 05m 424 

0.05 - 0.1m 945 0.05 - 0.1m 236 

0.1 - 0.2m 680 0.1 - 0.2m 174 

0.1 - 0.3m 45 0.2 - 0.3m 23 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Train data and Test data Residual Plot 
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Hybrid Undulation Model 

The orthometric GNSS undulation model predicted undulation values from the model 

compared to the actual data. They have some deviation, indicating that most predictions 

were close to the actual values, though some points fall outside the expected range due to 

reduced model accuracy. 

In the hybrid undulation model, the offset (∆N) difference between orthometric undulation 

and gravity undulation was used with the gravity undulation derived from the 

XGM2019e_2159 model. The accuracy of this model depends on the accuracy of the 

gravity values. Both orthometric and gravity undulation are equipotential surfaces with a 

non-linear relationship, which were used to build the hybrid model. 

Gravity undulation, derived from global geopotential models like XGM2019e_2159, 

captures variations in the Earth's gravitational field with high precision. However, these 

models may have limitations in local accuracy due to factors like data resolution and 

regional anomalies.  

The hybrid model accounts for the non-linear relationship between the two undulation 

types, using the offset (∆N) to minimize residuals. This approach helps to reduce the 

impact of any inaccuracies in the gravity model by effectively 'correcting' the orthometric 

undulation with precise gravity-derived data. Consequently, the residuals are minimized, 

leading to more accurate predictions. 

While the orthometric/GNSS undulation model tends to have higher residuals due to 

various local factors such as terrain variations and data inconsistencies, the hybrid model 

reduces these residuals at the same points by incorporating the gravity undulation data. In 

general, higher input values can result in higher residuals, but with a hybrid approach, 

even lower input values maintain low residuals, improving the overall accuracy and 

reliability of the predictions. 

As a result, the residuals between the model's predictions and the actual values are smaller 

compared to the Orthometric/GNSS undulation model. This improvement is due to the use 

of offsets (∆N) in building the model. The model managed to reduce the gap between 

predictions and actual values, making only minor adjustments when predicting new 

offsets. Therefore, the residuals for both the training and test datasets have decreased 

significantly. For the training dataset, the Root Mean Square Error (RMSE) was ±0.093 

meters, and for the test dataset, it was ±0.091 meters, both using the 7th-order polynomial, 

which turned out to be the most effective. In the training data, 95% of residuals were less 

than 0.2 meters, with 49% under 0.05 meters. Similarly, in the test data, 96% of residuals 
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are below 0.2 meters, with 50% under 0.05 meters. This polynomial order provided the 

most accurate predictions and the lowest RMSE values for both datasets, resulting in 

minimal residuals. The table below shows the residual ranges and data counts for both the 

training and test datasets. 

 

Table 2: Range Of Training Data & Test Data for Hybrid Undulation Model 

 

 

Orthometric GNSS Undulation Model 

The model developed was trained exclusively using undulation values to predict model 

values for specific coordinates. However, the data collection points were unevenly 

distributed across Sri Lanka, leading to geographic coverage gaps. This lack of uniform 

distribution may result in significant data gaps, which can impact the model's accuracy. 

As a result, the residuals between the model's predictions and the check values might be 

higher than anticipated. This situation underscores the importance of having a well-

distributed dataset to achieve more reliable and accurate undulation predictions. In the 

training data set, the Root Mean Square Error (RMSE) was ±0.2058 meters, and for the 

test data set, it was ±0.1936 meters, both at the 7th-order polynomial, which proved to be 

the most suitable. The train data set 77% of residual data less than 0.2m and 28.5% less 

than 0.05m. Also, test data set 79% of residual data was less than 0.2m and 28.5% less 

than 0.05m. This polynomial order provided the most accurate predictions and the lowest 

RMSE values for both the training and test datasets, reflecting minimal residuals. The 

Training Data Testing Data 

Range Data count Range Data count 

0.0 - 05m 1675 0.0 - 05m 430 

0.05 - 0.1m 903 0.05 - 0.1m 222 

0.1- 0.2m 
684 0.1 - 0.2m 171 

0.2 - 0.3m 
144 0.2 - 0.3m 29 

0.3 - 0.4m 
18 0.3 - 0.4m 4 

0.4 - 0.5m - 0.4 - 0.5m 1 
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table below illustrates the residual ranges and data counts for both the training and test 

datasets. 

 

Table 3: Range Of Training Data & Test Data for Orthometric GNSS Undulation Model 

Training Data Testing Data 

Range Data count Range Data count 

0.0 - 05m 979 0.0 - 05m 245 

0.05 - 0.1m 820 0.05 - 0.1m 210 

0.1- 0.2m 838 0.1 - 0.2m 223 

0.2 - 0.3m 419 0.2 - 0.3m 101 

0.3 - 0.4m 174 0.3 - 0.4m 36 

0.4 - 0.5m 52 0.4 - 0.5m 17 

0.5 - 0.6m 40 0.5 - 0.6m 4 

0.6 - 0.7m 56 0.6 - 0.7m 10 

0.7 - 0.8m 27 0.7 - 0.8m 6 

0.8m < 19 0.8m < 5 

 

Residual plots alone do not give a complete picture of residual distribution across Sri 

Lanka due to the uneven spread of data points. To address this, we used three different 

models to predict undulation values for 486,168 regular grid points. The orthometric 

GNSS undulation model and the Hybrid undulation model used north and east coordinates 

along with gravity undulation values to make predictions. The Gradient Boosting 

Regressor (GBR) predicts undulation values using gravity undulation values and 

coordinates. Sri Lankan boundary mask was applied and used the IDW (Inverse Distance 

Weighting) interpolation method in ArcGIS software was to ensure that interpolation was 

done only within the region. Gravity values extracted according to the XGM2019e_2159 

model for 486168 grid points covered by the whole Sri Lanka and the surrounding area. 

The following figure shows the Orthometric GNSS undulation model’s predicted 

undulation values for Sri Lanka, compared with the gravity undulation values developed 
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using the XGM2019e_2159 model. This comparison highlights the general undulation 

pattern and its variations with gravity undulation. However, the normal undulation pattern 

appears abnormal in the central hill region of the country, deviating from the expected 

shape. Additionally, there is another irregular pattern observed at the bottom of the island. 

 

 

Figure 5: Gravity Model Vs Normal Undulation Model  

 

Another map was created using a hybrid model to predict undulation values by 

incorporating gravity offset (∆N) and gravity undulation. The undulation values predicted 

by the hybrid model are closely similar the gravity undulation values since gravity data 

plays an important role in constructing this hybrid model. 
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Figure 6: Gravity Model Vs Hybrid Undulation Model  

The third map was created using the Gradient Boosting Regressor (GBR) model. It used 

gravity values from the XGM2019e_2159 model to predict undulation values. The 

resulting undulation surface closely resembles the gravity undulation surface since it was 

based on gravity values. This predicted surface was very similar to the natural undulation 

surface of Sri Lanka. 

Figure 7: Gravity Model Vs GBR Undulation Model 
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The evaluation metrics used in the analysis included Root Mean Squared Error (RMSE), and 

the Orthometric GNSS Model, which relies solely on normal undulation values and showed 

limited accuracy. In contrast, the Hybrid Method, which incorporates gravity undulation 

values, demonstrated significantly improved accuracy by reducing residuals. The GBR model 

outperformed both by effectively using gravity data, highlighting the potential of machine 

learning in geoid modelling. Table 5 represents the RMSE values for three models. 

Table 5: Evaluation RMSE 

 Orthometric GNSS Model Hybrid Method GBR model 

Test data RMSE ± 0.1936m ±0.0914m ± 0.0855m 

Train data RMSE ± 0.2058m ±0.0926m ± 0.0803m 

 

Table 6 presents the residuals, which are the differences between the actual undulation values 

and the predicted values from each model for a field-verified set of control points. These 

comparisons allow for an assessment of the accuracy and reliability of each model. 

Table 6: Field Data Verification for Models Residuals 

Point no North East Residual of Undulation values 

Normal Hybrid GBR 

62PL_329_25 471728.5 506583 -0.08418 0.097737 -0.02859 

62PL_329_28 471076.8 505893.2 -0.13743 0.183304 0.01423 

A068 470825.7 506213.9 -0.19271 0.171336 0.062657 

HBM2 471205.5 506535.7 -0.15138 0.226731 0.005738 

HBM5 470264 506531.1 -0.21353 0.124167 0.109796 

HBM1 471566.7 506579.9 -0.09857 0.076696 -0.00726 

HBM3 471018.2 506766.3 -0.17329 0.19527 0.036849 

HBM4 470663.2 506711.9 -0.20693 0.146852 0.085988 

33SL-403-066 521759 516392.6 -0.49524 0.066861 -0.00076 

33SL-403-068 521496.1 518185.1 -0.54011 0.03618 0.034063 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 18 of 21 
 

71SL403-073 521610.5 522097.2 -0.62651 0.012552 -0.03191 

A121 521578 518073.6 -0.53713 0.039927 0.030063 

ABM01 522212.5 522058.9 -0.62538 -0.00265 -0.01922 

ABM02 523124.8 522652.7 -0.73714 -0.06609 -0.04165 

33PL-303-007 496912.6 499093.9 0.857924 -0.13384 0.039689 

33PL-303-008 497318.4 498842.6 0.879193 -0.1174 0.021424 

TBM02 497488.6 499621.9 0.917006 -0.07064 -0.02723 

TBM03 497408.1 500010 0.832256 -0.17074 0.121685 

TBM05 498078.2 499812.1 0.891061 -0.12197 0.064894 

 

The lowest residuals were obtained from the GBR method, although the Hybrid Method also 

demonstrated low residuals compared to the Orthometric GNSS Model. Orthometric GNSS 

Model, where most residuals exceeded 0.50m. Thus, the Hybrid Method is more suitable than 

the Orthometric GNSS Model for prediction. However, when comparing all three models, the 

GBR method emerges as the most accurate for predicting undulation values. Model accuracy 

is significantly influenced by the quality of the initial stage data acquisition. To ensure 

reliable predictions, suitable filters were employed to identify and address outliers in the 

dataset. This preprocessing step helps in refining the data, which in turn enhances the 

accuracy and robustness of the predictive models. The accuracy of these predictions is 

influenced by several factors, including GNSS observation time, accuracy of ellipsoid 

heights, accuracy of mean sea level (MSL) heights, distribution of observation points, and the 

precision of the gravity undulation model.  

 

Conclusion and Recommendation  

Overall, the lowest RMSE value was obtained by the Gradient Boosting Regressor (GBR) 

model, indicating its superior performance. In both the orthometric GNSS undulation model 

and the Hybrid undulation model, the most accurate predictions were achieved using the 7th-

order polynomial fitting. When comparing the Hybrid and orthometric GNSS undulation 

models, the Hybrid model produced the lowest residual values, highlighting its higher 
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accuracy. The accuracy of these models depends heavily on the distribution of points, data 

quality, and the accuracy of the gravity model. During data processing, the same dataset was 

used for both training and testing across all three methods. For the GBR model, a data split of 

80% for training and 20% for testing was found to be most effective, eliminating the need for 

manual selection of training and test data. Field observations were used to verify and correct 

errors in the dataset, and appropriate filters were applied to remove outliers. It was identified 

that both the Hybrid method and the GBR model are more suitable than the orthometric 

GNSS undulation model. However, the accuracy of the Hybrid method is dependent on data 

distribution, actual undulation value accuracy, and gravity undulation value accuracy. 

Conversely, the GBR model's accuracy is mainly dependent on the accuracy of gravity 

undulation and actual undulation value, with minimal impact from the distribution of points, 

as the GBR model builds a relationship between gravity and undulation within the model.  

As recommendations,  

• Employ advanced statistical filters to identify and correct errors in the dataset 

effectively. 

•  Use an accurate gravity model, such as one derived from airborne gravimetric 

methods, to enhance the precision of the gravity undulation values, as both GBR and 

Hybrid methods rely heavily on this accuracy.  

• Ensure that the dataset is sufficiently dense by addressing gaps, especially in areas 

away from the road network where many points are currently concentrated. 

• In this task only 136 points from the Nation Geodetic Control Network of Sri Lanka 

(SLD99) were used because other control points of the National Control Network 

were identified as outliers. However, GNSS observations are more precise of Control 

Network points than other control points and bench marks. Therefore, re-observation 

of National Control Network points for Mean Sea Level height is a most suitable 

approach.  
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