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Abstract Land use and land cover (LULC) mapping is a crucial instrument in spatial planning and
environmental management, particularly in urban areas with high spatial dynamics. This study aims to
update the LULC map of BauBau City (study area 28,619 ha) using Landsat 8 imagery (September
2024). The method employed is supervised classification using the Maximum Likelihood Classification
(MLC) algorithm, supplemented by manual interpretation to enhance classification accuracy. The
research process includes data pre-processing (geometric, radiometric, and atmospheric corrections),
image classification, and accuracy testing using the Stratified Random Sampling approach at 300
reference points. The initial classification results identified five land cover classes, which were then
refined through manual interpretation to produce five main classes: forest, agriculture, built-up land,
open land, and water bodies. The evaluation yielded an overall accuracy of 91.7% and a Kappa
coefficient of 0.843, indicating an extreme level of classification suitability for field conditions. This
combined approach has proven effective in enhancing the spatial and thematic representation of LULC
mapping and can support sustainable, data-driven urban development planning.
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Introduction

Land use and land cover (LULC) mapping is a key approach to understanding the spatial
dynamics of a region, particularly in urban areas (Hersperger et al., 2018; Lu et al., 2022;
H. Wu et al., 2021). First developed in the early 1970s using aerial photography and analog
imagery (Loveland, 2012), this technique has evolved with advances in remote sensing and
Geographic Information Systems (GIS) technology. GIS integration enhances the ability to

analyze spatially and visualize dynamic and continuous changes in LULC (Yin et al., 2021).

Satellite sensors such as the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM),
and Enhanced Thematic Mapper Plus (ETM+) have enabled more accurate regional-scale
LULC mapping (Gomez et al., 2016; Masek et al., 2001). In the past decade, the arrival of
Landsat 8 and Sentinel-2 has provided significant improvements in spatial, spectral, and
temporal resolution, thus greatly supporting periodic and more detailed monitoring of
LULC changes (Shen et al., 2022, 2023; Tran et al., 2022; J. Wu et al., 2022). Landsat 8§,
with its Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors
providing 11 spectral channels, is widely used for mapping urban and tropical areas due to

its ability to accurately detect land cover variations (Roy et al., 2014). Several studies have
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shown that the Landsat 8 spectral configuration is effective in supporting spatial and
thematic analysis, including in the context of land-use planning and resource management
in tropical regions such as Indonesia (Baja et al., 2007; Baja et al., 2019a; Hakim et al.,
2021). Spatial use conflicts and uncontrolled land-use changes have also been studied in
South Sulawesi by Baja et al. (2019b), who emphasized the importance of regular LULC

data updates for cities like BauBau.

In an urban context, changes in LULC are closely related to urbanization processes, which
impact green open spaces (Negesse et al., 2024), surface water flow (Shrestha et al., 2021),
air quality (Islam et al., 2024; Li et al., 2019), and ambient temperature (Halefom et al.,
2024). In BauBau City, population growth and development activities over the past five
years (2018-2023) indicate significant changes in land wuse patterns, although
comprehensive historical data is still limited (Aldiansyah & Risna, 2024). Therefore,
updating LULC data is crucial to support spatial planning, environmental management, and

urban risk mitigation.

In various land use and land cover mapping studies, selecting the right classification method
is crucial, especially for complex urban areas. Previous studies have shown that supervised
approaches supplemented with visual validation, such as manual interpretation, tend to
produce more accurate results than fully automated methods (Lunetta et al., 2006; Roy et
al., 2014). Therefore, a combined approach is often employed to enhance both thematic and

spatial accuracy in LULC mapping.

This article focuses on updating the LULC map of BauBau City using Landsat 8 imagery,
using a supervised approach (MLC) combined with manual interpretation. The goal is to
produce an accurate and up-to-date LULC map to support sustainable urban planning based

on spatial data.

Research Location

BauBau City is located in the south of Buton Island, Southeast Sulawesi, with an area of 295.07
km?. Its varied geographic characteristics, spanning coastal areas, lowlands, and hills, make
this region quite complex in terms of land use and cover. This is consistent with the findings
of Baja et al. (2012), who emphasized that coastal and hilly areas in Sulawesi require different

spatial approaches in land use planning. The city was chosen as the research location due to its
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role as a center of economic activity and interregional connectivity in the Buton Islands. Rapid
population growth and infrastructure development in recent years have driven significant land
use changes (Suarmawati, 2023). Therefore, updated information on land use and cover in

BauBau is needed to support more responsive and sustainable spatial planning.
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Figure 1. Research Location Map

Data

This study used Landsat 8 imagery from 2024 (September 2024) with <5% cloud cover in the
study area as the primary data, with a spatial resolution of 30 meters and appropriate temporal
coverage. Landsat 8 is equipped with OLI and TIRS, which together provide a total of 11
spectral bands: nine optical bands, one panchromatic band, and two thermal bands (all
resampled to 30 m). This spectral and spatial configuration is very supportive for the analysis

of land use and land cover changes in tropical areas such as BauBau City (Roy et al., 2014;

USGS, 2019).

Administrative boundary maps are used as supporting data to facilitate regional identification
and validate spatial analysis results. Administrative boundary maps are obtained in shapefile

format (EPSG:4326) from the official Inageoportal portal (2024).
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Research Methods

This study utilizes a combined approach between Geographic Information Systems (GIS) and
Remote Sensing to analyze land use and cover (LULC) in BauBau City in 2024. In the LULC
study, image classification methods include unsupervised techniques such as the K-Means and
ISODATA algorithms (Paradis, 2022; Ruggeri et al., 2021; Singh & Singh, 2018), and
supervised techniques that require training data, such as Maximum Likelihood Classification
(MLC) and Support Vector Machine (SVM) (M. S. Chowdhury, 2024; S. Chowdhury, 2024;
Noer & Wibowo, 2024). Object-based approaches (OBIA), combining image segmentation and
feature classification, have also been widely used (Blaschke, 2010; Kucharczyk et al., 2020).
In addition, a fuzzy logic model for defining spatially based land management units has been
developed by Baja et. Al (2002), which is relevant for improving thematic accuracy in

heterogeneous areas.

This study used a combination of supervised classification with the Maximum Likelihood
Classification (MLC) algorithm in ArcGIS 10.8 and manual interpretation by examining
Google Earth Pro imagery. This approach was chosen to improve the accuracy of the
classification results, particularly in areas with high heterogeneity. Manual interpretation
served as additional validation to correct the automatic classification results, particularly for
unclear or overlapping class boundaries, and to add LULC classes that could not be identified

properly automatically.

Methodology
Figure 2 shows the research flow: image data pre-processing stage, image classification
(supervised MLC algorithm method and manual interpretation), and accuracy testing to ensure

that the resulting LULC map is accurate and represents actual conditions in BauBau City.

Data Pre-Processing

Satellite image preprocessing is a crucial step aimed at improving the visual quality, spatial
consistency, and radiometric accuracy of data before entering the land use and cover
classification process (Chander et al., 2009; Roy et al., 2014). This study used 2024 Landsat 8
imagery obtained through the USGS Earth Explorer and Copernicus Open Access Hub
platforms (Radeloff et al., 2022; Wulder et al., 2022). The series of preprocessing steps applied
included geometric correction, radiometric correction, band composite creation, atmospheric

correction, and image cropping according to administrative boundaries.
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Figure 2. Research flowchart

The initial stage is geometric correction to eliminate spatial distortion due to topography,
although the Level-1 Terrain Corrected (L1T) image has been orthorectified with DEM and
GCP (USGS, 2019). Next, the image is projected to UTM zone 51S (WGS 1984 datum) to
match other vector data. To facilitate spectral differentiation between land classes (such as
forest, settlement, water, or open land), radiometric correction is performed on each band using

the empirical formula:

(0.0002 X DN) — 0.1
—0.90014722

pTOA; =

Calibration coefficients (rescaling factor MA = 0.00002; offset AL = —0.1) refer to USGS
(2019). This calibration was calculated using the ENVI 5.5 platform before DOS correction
was applied. To prepare for interpretation and classification, such as vegetation, water bodies,
and built-up areas, band composites were created by combining Landsat 8 spectral channels
(11 bands). Examples of combinations are: 5-4-3 (NIR, Red, Green) and 6-5-4 (SWIR, NIR,
Red) to clarify visual features (Biney et al., 2022). Atmospheric correction using the Dark
Object Subtraction (DOS) method was applied to reduce atmospheric effects and improve

classification accuracy (Chavez, 1988). The final pre-processing stage was image clipping
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according to the administrative boundaries of BauBau City, so that the analysis only covers the

study area.

Data Processing

Supervised Classification

Supervised image classification begins with the selection of training samples based on visual
interpretation of Landsat 8 imagery and a combination of composite bands to distinguish each
class. The water class uses bands 5-6-4 because water appears dark in NIR (band 5).
Settlements use bands 7-6-4 to highlight artificial materials, and vegetation uses bands 6-5-2,

which are sensitive to chlorophyll.
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Figure 3. Band classification process map

After collecting training samples, classification is performed using the Maximum Likelihood
Classification (MLC) algorithm, which determines the class of each pixel based on the highest
probability of the training sample's statistical value. The result is a land use and land cover map

showing the spatial distribution of each class, depending on the quality of the samples used.

Manual Interpretation
After initial classification using supervised methods, manual interpretation is performed to
refine the results and increase spatial and thematic accuracy. This stage begins with converting

the classification results from raster to vector (polygon) to correct areas of misclassification.
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Manual interpretation is performed by comparing the classification results with reference data
such as high-resolution imagery, thematic maps, or field data to correct misclassifications. This
process involves three stages: (1) cloud masking to remove cloud-covered areas, (2)
classification correction to correct incorrect class labels, and (3) land reclassification to adjust

thematic classes based on visual interpretation.
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Figure 4. Supervised misclassification correction

All these stages are part of post-classification refinement, which aims to increase the reliability
of classification results visually, spatially, and thematically, so that they are more accurate and

reflect field conditions.

Accuracy test

Accuracy testing was conducted to assess the suitability of the 2024 land use and land cover
classification results to field conditions using the Stratified Random Sampling method. A total
of 300 sample points were taken proportionally to the area of each class using the Create
Accuracy Assessment Points tool in ArcGIS. These points were validated against reference
data, and the Overall Accuracy (OA) was calculated as an indicator of classification accuracy

and reliability of the 2024 LULC map.
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Results and Discussion

This section presents the main results of the 2024 BauBau City LULC image classification
process. The process included supervised classification, manual interpretation for visual
correction, and accuracy testing to assess the reliability of the results. The final results are

maps and area distributions for each class that reflect actual conditions in the field.

Supervised Classification
Supervised classification (MLC) identified five LULC classes in BauBau City, with a total
classified area of 28,619.11 ha. The distribution of each class is listed in Table 1.

Table 1. Supervised classification result class.

Region Name Area (ha)
Forest 21590.05

Built-up Land 4101.22

BauBau City Waterbodies 527.60

Bare Land 586.45

Could 1813.78

Total 28619.11
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Figure 5. Land Use and Land Cover
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The presence of cloud classes highlights the limitations of automated classification methods
in handling atmospheric noise, which can lead to misclassification. While these methods are
efficient and capable of processing large-scale data, their thematic accuracy remains limited,
particularly in distinguishing classes with similar spectral characteristics and detecting small

objects.

Manual Interpretation

Manual interpretation was applied post-supervised to detect new classes and correct errors
using high-resolution imagery. This image-based adjustment resulted in land use and cover
data that were more representative of actual conditions in the field, including the agricultural
class (5,539.35 ha) that was previously undefined in the supervised results. Forest area was
adjusted to 19,406.15 ha, built-up land was reduced to 3,179.36 ha, and the cloud class was
eliminated. Although more time-consuming, this approach proved effective in producing more
accurate and detailed classifications, especially in areas with high levels of complexity. The
final interpretation results are presented in Table 2 and Figure 6.

Table 2. Classification results of manual interpretation

Region Landcover Area (ha)
Forest 19406.15
Built-up Land 177.00
BauBau City | Bare Land 3179.36
Agriculture 5539.35
Waterbodies 317.26
Total 28619.11

Accuracy assesment

This study tested the accuracy of the 2024 land use and cover image classification results using
the Stratified Random Sampling method with 300 sample points distributed proportionally
across each land cover class. The resulting classification labels were compared with reference
labels based on visual interpretation of high-resolution imagery. Evaluation was carried out
through the preparation of a confusion matrix and the calculation of accuracy metrics, namely
Overall Accuracy (OA), Producer's Accuracy (PA), User's Accuracy (UA), and the Kappa

coefficient ().
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Figure 6. Manual interpretation classification map

Table 3. Accuracy test calculation value

Total Total Correct
Classification PA (%) | UA (%)
Reference (r;) |Prediction (ci) (Xii)
Forest 188 203 174 100.0 92.6
Agriculture 54 58 54 100.0 93.1
Built-up Land 29 33 26 89.7 78.8
Bare Land 14 2 2 14.3 100.0
Waterbodies 7 4 4 57.1 100.0

The accuracy value is calculated using the following formula:

a..
0A = 2 i X 100%
N
a;;
PA = - X 100%
Total column i
a;;
UA=—X100%
Total row i
N Y a;— X(R;C)
K= X 100% = 0.843
N— (R C)
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Information:
a;; : Number of correct classifications in class iv
R; : Number of pixels resulting from classification in class I (row)
C; :Number of references of class i (column)

: Total sample points (300 points)

The analysis results showed an Overall Accuracy of 91.7%, indicating that most of the
classification results were consistent with the reference data. The highest Producer’s Accuracy
(PA) was observed in the forest and agriculture classes, both reaching 100%, while the lowest
PA was found in open land (14.3%) and water bodies (57.1%). The low PA value for open land
is mainly due to the frequent presence of dry vegetation, which exhibits spectral characteristics
similar to built-up areas, making it difficult for the Maximum Likelihood Classification (MLC)
method to distinguish between these classes. In addition, narrow water bodies are often
confused with thin cloud shadows in the NIR band, resulting in lower classification accuracy.
The highest User’s Accuracy (UA) was recorded for open land and water bodies (100%),
whereas the built-up land class showed the lowest UA value (78.8%). PA values exceeding
100% may occur due to sampling bias or minor classification errors that cause overprediction
in that class. From these calculations, the Kappa Coefficient value of 0.843 indicates a very
strong level of agreement between the classification results and the reference, after correcting
for random match probabilities. This spatial-based accuracy evaluation approach has been
widely used in Indonesian LULC studies to improve the reliability of thematic maps in the

context of regional planning (Hakim et al., 2021, 2022).

Discussion

The combined method of supervised classification and manual interpretation successfully
improved thematic and spatial accuracy in land use and cover mapping. This aligns with
previous studies showing that integrating spatial approaches and thematic interpretation results
in more optimal land use decisions, particularly in areas with land use conflicts such as South
Sulawesi (Baja et al., 2019b). Successful classification begins with image preprocessing stages
(geometric, atmospheric, and mosaic correction), which play a crucial role in matching spectral
values and spatial position. This evaluation reflects the application of spatial validation
principles as described in the DSS approach by Baja et al. (2007), resulting in data ready for

analysis.
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The selection of the appropriate band composite affects the quality of the training sample, as
bands with high spectral contrast between classes can improve classification accuracy. In the
initial classification, the results showed the presence of a cloud class covering 1,813.78 ha, a
forest area 0f 21,590.05 ha, and an agricultural class that had not been specifically detected due
to spectral overlap. With manual interpretation based on high-resolution imagery and raster-
to-vector conversion, thematic and spatial corrections were performed. The cloud class was
eliminated, the forest area decreased to 19,406.15 ha, and the agricultural class was identified

as covering 5,539.35 ha.

Supervised classification excels in efficiency and large data processing, but is limited in
distinguishing spectrally similar objects. In contrast, manual interpretation is more visually
precise but requires more time and resources. The combination of the two produces more
accurate and representative maps, especially in complex areas, and supports more reliable

spatial-based decision-making.

Conclusion

This study demonstrates that updating the 2024 BauBau City Land Cover Map (LULC) can be
effectively implemented by combining supervised classification (MLC) and manual
interpretation based on high-resolution imagery. The initial classification identified five main
classes. Manual interpretation enhanced class detection and corrected errors, resulting in five
land cover classes that are more representative of actual conditions. Accuracy evaluation using
300 validation points yielded an overall accuracy of 91.7% and a Kappa coefficient of 0.843,

indicating extreme classification reliability.

This combined approach has been proven to improve thematic and spatial accuracy,
particularly in highly complex urban areas. The resulting LULC maps can be used as a basis
for decision-making in spatial planning, resource management, and environmental impact
mitigation in BauBau City. Going forward, regular data updates and high-resolution data

integration will support evidence-based, sustainable urban planning.
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