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Abstract Land use and land cover (LULC) mapping is a crucial instrument in spatial planning and 

environmental management, particularly in urban areas with high spatial dynamics. This study aims to 

update the LULC map of BauBau City (study area 28,619 ha) using Landsat 8 imagery (September 

2024). The method employed is supervised classification using the Maximum Likelihood Classification 

(MLC) algorithm, supplemented by manual interpretation to enhance classification accuracy. The 

research process includes data pre-processing (geometric, radiometric, and atmospheric corrections), 

image classification, and accuracy testing using the Stratified Random Sampling approach at 300 

reference points. The initial classification results identified five land cover classes, which were then 

refined through manual interpretation to produce five main classes: forest, agriculture, built-up land, 

open land, and water bodies. The evaluation yielded an overall accuracy of 91.7% and a Kappa 

coefficient of 0.843, indicating an extreme level of classification suitability for field conditions. This 

combined approach has proven effective in enhancing the spatial and thematic representation of LULC 

mapping and can support sustainable, data-driven urban development planning.  
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Introduction  

Land use and land cover (LULC) mapping is a key approach to understanding the spatial 

dynamics of a region, particularly in urban areas (Hersperger et al., 2018; Lu et al., 2022; 

H. Wu et al., 2021). First developed in the early 1970s using aerial photography and analog 

imagery (Loveland, 2012), this technique has evolved with advances in remote sensing and 

Geographic Information Systems (GIS) technology. GIS integration enhances the ability to 

analyze spatially and visualize dynamic and continuous changes in LULC (Yin et al., 2021). 

 

Satellite sensors such as the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), 

and Enhanced Thematic Mapper Plus (ETM+) have enabled more accurate regional-scale 

LULC mapping (Gómez et al., 2016; Masek et al., 2001). In the past decade, the arrival of 

Landsat 8 and Sentinel-2 has provided significant improvements in spatial, spectral, and 

temporal resolution, thus greatly supporting periodic and more detailed monitoring of 

LULC changes (Shen et al., 2022, 2023; Tran et al., 2022; J. Wu et al., 2022). Landsat 8, 

with its Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors 

providing 11 spectral channels, is widely used for mapping urban and tropical areas due to 

its ability to accurately detect land cover variations (Roy et al., 2014). Several studies have 
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shown that the Landsat 8 spectral configuration is effective in supporting spatial and 

thematic analysis, including in the context of land-use planning and resource management 

in tropical regions such as Indonesia (Baja et al., 2007; Baja et al., 2019a; Hakim et al., 

2021). Spatial use conflicts and uncontrolled land-use changes have also been studied in 

South Sulawesi by Baja et al. (2019b), who emphasized the importance of regular LULC 

data updates for cities like BauBau. 

 

In an urban context, changes in LULC are closely related to urbanization processes, which 

impact green open spaces (Negesse et al., 2024), surface water flow (Shrestha et al., 2021), 

air quality (Islam et al., 2024; Li et al., 2019), and ambient temperature (Halefom et al., 

2024). In BauBau City, population growth and development activities over the past five 

years (2018–2023) indicate significant changes in land use patterns, although 

comprehensive historical data is still limited (Aldiansyah & Risna, 2024). Therefore, 

updating LULC data is crucial to support spatial planning, environmental management, and 

urban risk mitigation. 

 

In various land use and land cover mapping studies, selecting the right classification method 

is crucial, especially for complex urban areas. Previous studies have shown that supervised 

approaches supplemented with visual validation, such as manual interpretation, tend to 

produce more accurate results than fully automated methods (Lunetta et al., 2006; Roy et 

al., 2014). Therefore, a combined approach is often employed to enhance both thematic and 

spatial accuracy in LULC mapping. 

 

This article focuses on updating the LULC map of BauBau City using Landsat 8 imagery, 

using a supervised approach (MLC) combined with manual interpretation. The goal is to 

produce an accurate and up-to-date LULC map to support sustainable urban planning based 

on spatial data. 

 

Research Location 

BauBau City is located in the south of Buton Island, Southeast Sulawesi, with an area of 295.07 

km². Its varied geographic characteristics, spanning coastal areas, lowlands, and hills, make 

this region quite complex in terms of land use and cover. This is consistent with the findings 

of Baja et al. (2012), who emphasized that coastal and hilly areas in Sulawesi require different 

spatial approaches in land use planning. The city was chosen as the research location due to its 
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role as a center of economic activity and interregional connectivity in the Buton Islands. Rapid 

population growth and infrastructure development in recent years have driven significant land 

use changes (Suarmawati, 2023). Therefore, updated information on land use and cover in 

BauBau is needed to support more responsive and sustainable spatial planning. 

 
 

Figure 1. Research Location Map 
 

Data 

This study used Landsat 8 imagery from 2024 (September 2024) with <5% cloud cover in the 

study area as the primary data, with a spatial resolution of 30 meters and appropriate temporal 

coverage. Landsat 8 is equipped with OLI and TIRS, which together provide a total of 11 

spectral bands: nine optical bands, one panchromatic band, and two thermal bands (all 

resampled to 30 m). This spectral and spatial configuration is very supportive for the analysis 

of land use and land cover changes in tropical areas such as BauBau City (Roy et al., 2014; 

USGS, 2019). 

 

Administrative boundary maps are used as supporting data to facilitate regional identification 

and validate spatial analysis results. Administrative boundary maps are obtained in shapefile 

format (EPSG:4326) from the official Inageoportal portal (2024). 
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Research Methods 

This study utilizes a combined approach between Geographic Information Systems (GIS) and 

Remote Sensing to analyze land use and cover (LULC) in BauBau City in 2024. In the LULC 

study, image classification methods include unsupervised techniques such as the K-Means and 

ISODATA algorithms (Paradis, 2022; Ruggeri et al., 2021; Singh & Singh, 2018), and 

supervised techniques that require training data, such as Maximum Likelihood Classification 

(MLC) and Support Vector Machine (SVM) (M. S. Chowdhury, 2024; S. Chowdhury, 2024; 

Noer & Wibowo, 2024). Object-based approaches (OBIA), combining image segmentation and 

feature classification, have also been widely used (Blaschke, 2010; Kucharczyk et al., 2020). 

In addition, a fuzzy logic model for defining spatially based land management units has been 

developed by Baja et. Al (2002), which is relevant for improving thematic accuracy in 

heterogeneous areas. 

 

This study used a combination of supervised classification with the Maximum Likelihood 

Classification (MLC) algorithm in ArcGIS 10.8 and manual interpretation by examining 

Google Earth Pro imagery. This approach was chosen to improve the accuracy of the 

classification results, particularly in areas with high heterogeneity. Manual interpretation 

served as additional validation to correct the automatic classification results, particularly for 

unclear or overlapping class boundaries, and to add LULC classes that could not be identified 

properly automatically. 

 

Methodology  

Figure 2 shows the research flow: image data pre-processing stage, image classification 

(supervised MLC algorithm method and manual interpretation), and accuracy testing to ensure 

that the resulting LULC map is accurate and represents actual conditions in BauBau City. 

 

Data Pre-Processing 

Satellite image preprocessing is a crucial step aimed at improving the visual quality, spatial 

consistency, and radiometric accuracy of data before entering the land use and cover 

classification process (Chander et al., 2009; Roy et al., 2014). This study used 2024 Landsat 8 

imagery obtained through the USGS Earth Explorer and Copernicus Open Access Hub 

platforms (Radeloff et al., 2022; Wulder et al., 2022). The series of preprocessing steps applied 

included geometric correction, radiometric correction, band composite creation, atmospheric 

correction, and image cropping according to administrative boundaries. 
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Figure 2. Research flowchart 

 

The initial stage is geometric correction to eliminate spatial distortion due to topography, 

although the Level-1 Terrain Corrected (L1T) image has been orthorectified with DEM and 

GCP (USGS, 2019). Next, the image is projected to UTM zone 51S (WGS 1984 datum) to 

match other vector data. To facilitate spectral differentiation between land classes (such as 

forest, settlement, water, or open land), radiometric correction is performed on each band using 

the empirical formula: 

𝜌𝑇𝑂𝐴𝜆 =
(0.0002 𝑋 𝐷𝑁) − 0.1

−0.90014722
 

 

Calibration coefficients (rescaling factor Mλ = 0.00002; offset Aλ = −0.1) refer to USGS 

(2019). This calibration was calculated using the ENVI 5.5 platform before DOS correction 

was applied. To prepare for interpretation and classification, such as vegetation, water bodies, 

and built-up areas, band composites were created by combining Landsat 8 spectral channels 

(11 bands). Examples of combinations are: 5-4-3 (NIR, Red, Green) and 6-5-4 (SWIR, NIR, 

Red) to clarify visual features (Biney et al., 2022). Atmospheric correction using the Dark 

Object Subtraction (DOS) method was applied to reduce atmospheric effects and improve 

classification accuracy (Chavez, 1988). The final pre-processing stage was image clipping 
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according to the administrative boundaries of BauBau City, so that the analysis only covers the 

study area. 

 

Data Processing 

Supervised Classification 

Supervised image classification begins with the selection of training samples based on visual 

interpretation of Landsat 8 imagery and a combination of composite bands to distinguish each 

class. The water class uses bands 5-6-4 because water appears dark in NIR (band 5). 

Settlements use bands 7-6-4 to highlight artificial materials, and vegetation uses bands 6-5-2, 

which are sensitive to chlorophyll. 

 

Figure 3. Band classification process map 

 

After collecting training samples, classification is performed using the Maximum Likelihood 

Classification (MLC) algorithm, which determines the class of each pixel based on the highest 

probability of the training sample's statistical value. The result is a land use and land cover map 

showing the spatial distribution of each class, depending on the quality of the samples used. 

 

Manual Interpretation 

After initial classification using supervised methods, manual interpretation is performed to 

refine the results and increase spatial and thematic accuracy. This stage begins with converting 

the classification results from raster to vector (polygon) to correct areas of misclassification. 
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Manual interpretation is performed by comparing the classification results with reference data 

such as high-resolution imagery, thematic maps, or field data to correct misclassifications. This 

process involves three stages: (1) cloud masking to remove cloud-covered areas, (2) 

classification correction to correct incorrect class labels, and (3) land reclassification to adjust 

thematic classes based on visual interpretation. 

 

Figure 4. Supervised misclassification correction 

 

All these stages are part of post-classification refinement, which aims to increase the reliability 

of classification results visually, spatially, and thematically, so that they are more accurate and 

reflect field conditions. 

 

 

Accuracy test 

Accuracy testing was conducted to assess the suitability of the 2024 land use and land cover 

classification results to field conditions using the Stratified Random Sampling method. A total 

of 300 sample points were taken proportionally to the area of each class using the Create 

Accuracy Assessment Points tool in ArcGIS. These points were validated against reference 

data, and the Overall Accuracy (OA) was calculated as an indicator of classification accuracy 

and reliability of the 2024 LULC map. 
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Results and Discussion  

This section presents the main results of the 2024 BauBau City LULC image classification 

process. The process included supervised classification, manual interpretation for visual 

correction, and accuracy testing to assess the reliability of the results. The final results are 

maps and area distributions for each class that reflect actual conditions in the field. 

 

Supervised Classification 

Supervised classification (MLC) identified five LULC classes in BauBau City, with a total 

classified area of 28,619.11 ha. The distribution of each class is listed in Table 1. 

 Table 1. Supervised classification result class. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Land Use and Land Cover 

Region Name Area (ha) 

BauBau City 

Forest 21590.05 

Built-up Land 4101.22 

Waterbodies 527.60 

Bare Land 586.45 

Could 1813.78 

Total 28619.11 
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The presence of cloud classes highlights the limitations of automated classification methods 

in handling atmospheric noise, which can lead to misclassification. While these methods are 

efficient and capable of processing large-scale data, their thematic accuracy remains limited, 

particularly in distinguishing classes with similar spectral characteristics and detecting small 

objects. 

 

Manual Interpretation 

Manual interpretation was applied post-supervised to detect new classes and correct errors 

using high-resolution imagery. This image-based adjustment resulted in land use and cover 

data that were more representative of actual conditions in the field, including the agricultural 

class (5,539.35 ha) that was previously undefined in the supervised results. Forest area was 

adjusted to 19,406.15 ha, built-up land was reduced to 3,179.36 ha, and the cloud class was 

eliminated. Although more time-consuming, this approach proved effective in producing more 

accurate and detailed classifications, especially in areas with high levels of complexity. The 

final interpretation results are presented in Table 2 and Figure 6. 

Table 2. Classification results of manual interpretation 

Region Landcover Area (ha) 

BauBau City 

Forest 19406.15 

Built-up Land 177.00 

Bare Land 3179.36 

Agriculture 5539.35 

Waterbodies 317.26 

Total 28619.11 

 

Accuracy assesment  

This study tested the accuracy of the 2024 land use and cover image classification results using 

the Stratified Random Sampling method with 300 sample points distributed proportionally 

across each land cover class. The resulting classification labels were compared with reference 

labels based on visual interpretation of high-resolution imagery. Evaluation was carried out 

through the preparation of a confusion matrix and the calculation of accuracy metrics, namely 

Overall Accuracy (OA), Producer's Accuracy (PA), User's Accuracy (UA), and the Kappa 

coefficient (κ).       
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Figure 6. Manual interpretation classification map 

 

Table 3. Accuracy test calculation value 
 

Classification 
Total 

Reference (rᵢ) 

Total 

Prediction (cᵢ) 

Correct 

(xᵢᵢ) 
PA (%) UA (%) 

Forest 188 203 174 100.0 92.6 

Agriculture 54 58 54 100.0 93.1 

Built-up Land 29 33 26 89.7 78.8 

Bare Land 14 2 2 14.3 100.0 

Waterbodies 7 4 4 57.1 100.0 

 

The accuracy value is calculated using the following formula: 

𝑂𝐴 =
∑ 𝑎𝑖𝑖

𝑁
 𝑋 100% 

𝑃𝐴 =
𝑎𝑖𝑖

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑙𝑢𝑚𝑛 𝑖
 𝑋 100% 

𝑈𝐴 =
𝑎𝑖𝑖

𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑤 𝑖
 𝑋 100% 

𝐾 =
𝑁 ∑ 𝑎𝑖𝑖 −  ∑(𝑅𝑖 ∙ 𝐶𝑖)

𝑁 −  ∑(𝑅𝑖 ∙ 𝐶𝑖)
 𝑋 100% = 0.843 
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Information: 

 𝑎𝑖𝑖  : Number of correct classifications in class iv  

 𝑅𝑖   : Number of pixels resulting from classification in class I (row) 

 𝐶𝑖   : Number of references of class i (column) 

 𝑁    : Total sample points (300 points) 

The analysis results showed an Overall Accuracy of 91.7%, indicating that most of the 

classification results were consistent with the reference data. The highest Producer’s Accuracy 

(PA) was observed in the forest and agriculture classes, both reaching 100%, while the lowest 

PA was found in open land (14.3%) and water bodies (57.1%). The low PA value for open land 

is mainly due to the frequent presence of dry vegetation, which exhibits spectral characteristics 

similar to built-up areas, making it difficult for the Maximum Likelihood Classification (MLC) 

method to distinguish between these classes. In addition, narrow water bodies are often 

confused with thin cloud shadows in the NIR band, resulting in lower classification accuracy. 

The highest User’s Accuracy (UA) was recorded for open land and water bodies (100%), 

whereas the built-up land class showed the lowest UA value (78.8%). PA values exceeding 

100% may occur due to sampling bias or minor classification errors that cause overprediction 

in that class. From these calculations, the Kappa Coefficient value of 0.843 indicates a very 

strong level of agreement between the classification results and the reference, after correcting 

for random match probabilities. This spatial-based accuracy evaluation approach has been 

widely used in Indonesian LULC studies to improve the reliability of thematic maps in the 

context of regional planning (Hakim et al., 2021, 2022). 

 

Discussion 

The combined method of supervised classification and manual interpretation successfully 

improved thematic and spatial accuracy in land use and cover mapping. This aligns with 

previous studies showing that integrating spatial approaches and thematic interpretation results 

in more optimal land use decisions, particularly in areas with land use conflicts such as South 

Sulawesi (Baja et al., 2019b). Successful classification begins with image preprocessing stages 

(geometric, atmospheric, and mosaic correction), which play a crucial role in matching spectral 

values and spatial position. This evaluation reflects the application of spatial validation 

principles as described in the DSS approach by Baja et al. (2007), resulting in data ready for 

analysis. 
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The selection of the appropriate band composite affects the quality of the training sample, as 

bands with high spectral contrast between classes can improve classification accuracy. In the 

initial classification, the results showed the presence of a cloud class covering 1,813.78 ha, a 

forest area of 21,590.05 ha, and an agricultural class that had not been specifically detected due 

to spectral overlap. With manual interpretation based on high-resolution imagery and raster-

to-vector conversion, thematic and spatial corrections were performed. The cloud class was 

eliminated, the forest area decreased to 19,406.15 ha, and the agricultural class was identified 

as covering 5,539.35 ha. 

 

Supervised classification excels in efficiency and large data processing, but is limited in 

distinguishing spectrally similar objects. In contrast, manual interpretation is more visually 

precise but requires more time and resources. The combination of the two produces more 

accurate and representative maps, especially in complex areas, and supports more reliable 

spatial-based decision-making. 

 

Conclusion 

This study demonstrates that updating the 2024 BauBau City Land Cover Map (LULC) can be 

effectively implemented by combining supervised classification (MLC) and manual 

interpretation based on high-resolution imagery. The initial classification identified five main 

classes. Manual interpretation enhanced class detection and corrected errors, resulting in five 

land cover classes that are more representative of actual conditions. Accuracy evaluation using 

300 validation points yielded an overall accuracy of 91.7% and a Kappa coefficient of 0.843, 

indicating extreme classification reliability. 

 

This combined approach has been proven to improve thematic and spatial accuracy, 

particularly in highly complex urban areas. The resulting LULC maps can be used as a basis 

for decision-making in spatial planning, resource management, and environmental impact 

mitigation in BauBau City. Going forward, regular data updates and high-resolution data 

integration will support evidence-based, sustainable urban planning. 
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