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Abstract

Southeast Asia is one of the climate-sensitive areas in the world that is often hit by hydroclimatic
extremes in the form of droughts, floods, and disrupted monsoon regimes with cascading impacts on
agriculture, water security, and disaster preparedness. The extremes are produced both by global and
regional climate change and natural climate variability including the El Nifio—Southern Oscillation
(ENSO), which has widespread predominance over interannual precipitation variability. This paper
provides an extensive Spatio-temporal evaluation of Southeast Asian precipitation anomalies from 2010
to 2024 using an integration of satellite-retrieved precipitation, ENSO phase categorization, and cloud-
computing facilitated geospatial processing. CHIRPS daily precipitation totals were summed to annual
totals and normalized as z-scores to categorize wet and dry anomalies against long-term climatology.
ENSO phases were defined by the Oceanic Nivio Index, and Google Earth Engine (GEE) was employed
to compute local anomaly maps and obtain statistical summaries. Results indicate intense Spatio-
temporal variability of precipitation anomalies with El Nifio years 2015 and 2019 generating pan-
regional drought deficits, whereas La Ninia years 2010 and 2022 had increased rainfall and wet
anomalies. Seasonal disaggregation also emphasizes that DJF (December—February) anomalies are
most sensitive to variability in ENSO, with El Nifio enhancing the extent of drought and La Nifia
enhancing rainfall, while country-level analysis suggests local sensitivities in Brunei, Malaysia, and
the Philippines during La Nifia and Indonesia and Vietnam during El Nifio droughts. To extrapolate
these findings, a Random Forest regression model was developed using prior anomaly—ENSO
relationships that exhibited good predictability (R?> = 0.82; RMSE = 18.6 mm) and predicted 2025
anomalies, in which eastern Indonesia and coastal Vietnam were ranked most likely rainfall deficiency
hotspots. By combining satellite remote sensing, cloud computing, and machine learning, this research
improves ENSO-precipitation relationship understanding and offers strong scientific evidence to
inform climate-resilient planning in a highly hydro climatically vulnerable region.
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Introduction
Southeast Asia is among the most climate-sensitive regions of the globe, with recurring
instances of hydroclimatic extremes in the dynamics of floods, droughts, and monsoonal

variability (Kumar & Dwarakish, 2025). The extremes are aggravated by global change, as
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well as natural variability, with the El Nifio—Southern Oscillation (ENSO) playing a
prevailing role in regional temperature and precipitation variability, the extremes have
broad socio-economic and environmental impacts that extend far to include agriculture,
water resources, human health, and infrastructure (Zhu et al., 2025).

Among the robust predictors of such disturbances are climatic anomaly frequencies from
climatic normal spanning long timescales in corresponding variables of rain. They must be
detected and tracked in space and time with the highest priority towards adaptive planning
and disaster risk mitigation, detection and interpretation of climatic anomalies are more
important in Southeast Asia due to topographical complexity, micro-climatological
complexity, and susceptibility to ocean atmosphere interactions like ENSO (Sa’Adi et al.,
2025).

Past climate anomaly studies across Southeast Asia were limited by poor ground-based
measurement networks and patchy data coverage. Revolution in space-based remote
sensing and cloud computing platforms such as Google Earth Engine (GEE) have
transformed the ability to monitor the climate. Such technologies enable routine monitoring
of climate variables at spatial and temporal resolutions suitable to detect anomalies across
national and ecological boundaries (Gorelick et al., 2017).

Whereas machine learning techniques such as Random Forest have widely been used in
climate anomaly research, this research focuses on statistical anomaly detection using
standardized indices of satellite-retrieved precipitation. Utilization of CHIRPS data along
with GEE cloud computing enables reproducible and scalable workflows.

While prior research has broached climate trends and ENSO impact in Asia, hardly any
have employed a spatially explicit, interannual anomaly dynamic analysis of remote sensing
and predictive modeling of far greater importance, little has been done to quantitatively
explain the ENSO-anomaly relationship in systematic terms through standardized anomaly
indices in Southeast Asia and this matters when building regional early warning systems
and adaptive planning for climate (Xie et al., 2025)

This study examines four primary aims: (i) to compute yearly, z-score standardized
precipitation anomalies; (ii) to investigate regional tendencies in line with ENSO phases (EI
Nino, La Nifa, Neutral); (iii) to perform country-level anomaly statistics and temporal
trends; and (iv) to investigate the long-term trend and reveal emerging threats.

With examination of high-resolution satellite data, GEE cloud computing, and statistics,

this paper presents a general description of Southeast Asian climate variability, impacts are
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returned to scientific knowledge as well as operation products for climate resilience
planning in highly vulnerable areas.

This paper is structured as follows: Section 2 reviews relevant literature, section 3 outlines
the data and methodology, section 4 presents results and discussions, and section 5
concludes with the key findings and policy implications.

Literature Review

South Asian climatic irregularities need to be examined through the assistance of
atmospheric science information as well as geospatial analysis. Based on previous studies,
it has been determined that El Nifio—Southern Oscillation (ENSO) exerts far-reaching
impacts on rainfall fluctuations as well as drought events in the continent (Hay & Williams,
2022). Specifically, strong El Nifio years have generally been associated with extended dry
periods and reduced monsoon strength, while La Nifa periods provide heavier rains with
higher chances of flooding. Other than ENSO, the Indian Ocean Dipole (IOD) was also
found to be a significant forcing of seasonal hydroclimatic extremes in South Asia, which
generally modulates or supplements ENSO phases (Priya et al., 2024)

Remote sensing has also been contributing significantly towards such anomaly monitoring
via synoptic spatial coverage and temporal continuity. Satellite products such as CHIRPS
rainfall estimates, MODIS land surface temperature, and vegetation indices (NDVI, EVI)
have contributed Spatio-temporal assessment of droughts, heatwaves, and land degradation
processes (Gummadi et al., 2022). All these datasets are of invaluable advantage relative to
sparsely available ground meteorological networks, particularly in South Asia's rural and
mountainous terrain.

Contrarily, machine learning techniques have the best performance in detecting
environmental anomalies. Support Vector Machines, Random Forests, and deep networks
have been employed with phenomenal success in delineating occurrences of drought,
predicting rainfall variability, and detecting vegetation stress and hybrid models of artificial
intelligence coupled with earth observation more recently offered improved predictability
in defining onset time, amplitude, and space-time distribution of climate extremes (Koley,
2024).

Despite such improvements, there are still gaps of sorts. Most of the past work consists of a
single country or a short-time window, excluding detection of long-term and South Asia-
scale anomaly patterns. Relatively fewer attempts have been made toward incorporating

satellite data in an explicit manner, ENSO phase categorization, and machine learning as
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well in validation at the scale of South Asia for rainfall anomalies. Filling in this gap, the
present study uses multi-source observations and Al models to detect and contrast 2010—
2024 rainfall anomalies and thus build a new perspective on Spatio-temporal extremes of
climate over the region.

Methodology

This study employed a combined, multi-step methodology that combines satellite-retrieved
precipitation data, large-scale climate indexes, and cloud-based geospatial computing in
identifying, analyzing, and forecasting Southeast Asian precipitation anomalies during
2010-2024. The methodological strategy consists of six primary steps: delimitation of the

study area boundary, data acquisition, calculation of anomaly, Spatio-temporal analysis,

ENSO-phase stratification, and machine learning-based predictive modeling.

Study Area

The region under study is Southeast Asia, and the purpose is to examine 11 countries:

Indonesia, Malaysia, Thailand, Vietnam, the Philippines, Myanmar, Cambodia, Laos,

Singapore, Brunei, and Timor-Leste. Southeast Asia is marked by a highly complex climatic
regime that is influenced by the Asian monsoon system, the marine climate, and interaction
with large-scale ocean atmosphere conditions such as the El Nifilo Southern Oscillation
(ENSO) (Rajeevan et al., 2025).The interaction of monsoon seasons, tropical cyclones, and
ENSO variability creates robust hydroclimatic extremes in the form of floods and droughts.

The combinations place Southeast Asia as a prime case to examine climate anomaly

detection and prediction due to its exposure to variability and resulting societal

vulnerabilities in agriculture, water security, and disaster risk (Hunt & Harrison, 2025)
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Figure 1: Study Area
Data Sources
Precipitation records were obtained from the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) on a 0.05° daily precipitation grid. ENSO categorization was
made using the application of the Oceanic Nifio Index (ONI) by dividing years as El Nifo,
La Nifa, or Neutral years according to NOAA criteria (Hariadi et al., 2023).
Precipitation Anomaly Calculation
Annual total precipitation was computed from daily CHIRPS data for each year between
2010 and 2024. The long-term precipitation climatology (mean and standard deviation) was
computed for the 15-year study period (Yi et al., 2023). Standardized anomalies (z-scores)
were then computed as:
Z=(X-w)o
Where:
7= standardized anomaly (z-score),
X = annual precipitation for a given year,
u = long-term mean precipitation (climatology),

o = standard deviation of precipitation over the climatological baseline.
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Google Earth Engine Workflow

Preprocessing and zonal analysis was conducted in Google Earth Engine (GEE). Time-
series precipitation was clipped export study area, and annual accumulations were
aggregated and normalized to obtain anomalies and export regional spatial statistics and
anomaly time series to CSV for statistical and visualization analyses in Python.

ENSO Anomaly Correlation

One year was assigned to an ENSO phase based on DJF (December—February) seasonal
ONI values. The anomaly values were summed under each ENSO category and averaged
at the country level. This permitted comparison of precipitation anomalies for El Nifio, La
Nifia, and Neutral years using descriptive statistics and confidence intervals (Liang et al.,
2022)

Seasonal and Country-Level ENSO Analysis

To further examine the Spatio-temporal complexity, anomalies were divided into four
meteorological seasons: DJF, MAM, JJA, and SON. Country-wise, anomalies were
examined for every ENSO phase to explore geographic variability.

Random Forest Prediction Modeling

A Random Forest regression model was trained using historical precipitation anomalies and
ENSO phases as predictor features. The model was trained on a 70:30 train-validation split
(20102020 train, 2021-2024 validation). Metrics for performance were RMSE and R2. The
trained model was used to predict the 2025 anomaly pattern.

Upon validation, the trained model was used to produce precipitation anomaly predictions
for 2025 over Southeast Asia. Anomalies were forecasted to country scale and divided by
ENSO phase (El Nifio, La Nifia, Neutral) to extrapolate future variability potential. Results
were displayed in spatial anomaly maps, bar plots, and summary tables to reveal newly
emerging hotspots of rainfall excess and deficit (Chen et al., 2025).

Visualization and Trend Analysis

Time series and spatial anomaly maps were generated. Standard deviation levels were used
to identify extremely wet and dry years. Visualization products were processed in both GEE

and Python (Matplotlib, Seaborn).
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Figure 2: Workflow for Spatio-temporal Precipitation Anomalies

This flowchart illustrates the methodological process for analyzing and predicting

precipitation anomalies in Southeast Asia using Google Earth Engine and machine learning.

The workflow begins with data acquisition (CHIRPS precipitation data and ENSO phases)

and study area definition, processes through

annual precipitation calculation and

climatology establishment, culminates in precipitation anomaly detection and trend analysis

relative to ENSO phases, and concludes with machine learning-based prediction of future

anomalies.
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Results and Discussion

Multi-Year Spatial Patterns Anomalies Across ENSO and Non-ENSO Phases
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Figure 3: Spatio-temporal precipitation anomaly maps across ENSO and seasonal periods
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Figure 3 presents five of the most significant periods' spatial patterns of precipitation
anomalies, illustrating heterogeneous ENSO-forced hydroclimatic response in Southeast
Asia. During January 2010, a record La Nifia year, positive anomalies dominate western
Indonesia, the Philippines, and the mainland of Southeast Asia. This is consistent with La
Nifia-induced Walker circulation strengthening observations that enhance convection and
precipitation over the west Pacific (Kumar & Dwarakish, 2025). By comparison, October
2015, a record-strong El Nifio episode, is characterized by widespread negative rainfall-
suppression anomalies of significance over Indonesia and the Philippines of reduced
western Pacific convection and displaced ITCZ, as set up in previous El Nifio studies.

Later years repeat these tendencies. December 2020, an immature ENSO-neutral month,
has randomly spaced spatial anomalies characteristic of non-ENSO forcing by Madden-
Julian Oscillation (MJO) or Indian Ocean Dipole (IOD) (Luo et al., 2025). July 2023, during
strengthening El Nifio phases, shows drying over the northern Philippines and Indonesia
with scattered wet pockets over Papua and Kalimantan that may be indicative of local
monsoon processes. By January 2024, the pre-onset La Nina conditions once more align
with unprecedented positive anomalies, as forecast by the previous wintertime La Nifia
effects. Outcomes confirm the robust modulating influence of ENSO on regional
hydroclimate and highlight the necessity of integrating seasonal forecasting into water

resources and disaster risk management planning (Yang et al., 2023).
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Table 1: Statistical summary of precipitation anomaly in Southeast Asia

Year Ag/([)(::::ly 2:11 f)(lilllillllly Min Anomaly Max Anomaly
2010 4.57 1.92 —268.94 237.52
2011 46.84 25.86 -167.57 675.64
2012 —14.78 -5.52 -269.29 651.75
2013 —0.63 -1.76 -340.92 353.90
2014 —25.65 —-19.81 -337.07 521.11
2015 -3.15 -1.09 —414.07 363.23
2016 -57.63 -37.80 -621.41 305.62
2019 —9.87 -1.30 -353.31 242.04
2020 -37.11 —-16.79 —528.46 252.44
2021 31.48 11.24 —185.53 560.99
2022 —-18.19 —0.93 -519.41 152.84
2023 22.25 1.87 —254.15 772.21
2024 7.31 —0.48 —385.29 358.02

Table 1 presents a statistical summary of Southeast Asia interannual precipitation anomalies
for 2010-2024 with very high interannual variability from colossal climate drivers. The
driest anomaly of —57.63 mm was felt during 2016 in conjunction with intense residual El
Nifio influence, while above-normal rainfall occurred during 2011 (46.84 mm), 2021 (31.48
mm), and 2023 (22.25 mm) and is characteristic of La Nifia activity. 772.21 mm maximum
anomaly in 2023 can be attributed to local heavy precipitation events, or spatial
heterogeneity of hydroclimatic regimes within the region. Large negative minimum
anomalies of -528.46 mm and -519.41 mm, respectively, in 2020 and 2022 can be explained
as patches of drought despite regional positive means occurring in a few instances. This
variability highlights the significance of phases in ENSO in determining local rainfall and
indicates the benefit of combining anomaly maps and statistical records in recording spatial

and temporal extremes to facilitate effective climate resilience planning (Ma et al., 2025).
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Temporal Trends in Precipitation Anomalies (2010-2024)

Southeast Asia Annual Precipitation Anomalies (2010-2024)
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Figure 4: Annual Precipitation Anomalies (2010-2024)

Figure 4 Time series of interannual precipitation anomalies in Southeast Asia for 2010—
2024, mean, median, minimum, and maximum. The figure indicates interannual
hydroclimatic extremes variability and regional precipitation regime throughout the study
period.

Figure 4 time series show high interannual variability in Southeast Asian precipitation
anomalies during the 2010-2024 period. Anomalies in the mean and media are near zero,
reflecting regional averaging effects, but minimum and maximum anomaly lines display
extreme values. For example, 2016 and 2020 have extremely negative minima (—621.41
mm and —528.46 mm, respectively), both of which fall at local droughts, while the highest
maximum anomaly (772.21 mm) falls in 2023 and is related to exceptional rain events.
Most notably, there are maximum positive anomalies following La Nifia events (2011,
2021, 2023), and enormous deficits during extreme El Nifio years (2015-2016), consistent
with ENSO's effect on regional hydroclimate (Spencer & Strobl, 2025).

These results verify the asymmetricity of extreme distributions under which extreme
anomalies respond more vulnerably compared to mean values and verify the demands for
spatially disaggregated analysis. The ongoing divergence between minimum and maximum
anomaly trends also indicate further spatial disparity in hydroclimatic impacts across
Southeast Asian nations. These sorts of information are significant in informing adaptive
agriculture strategies, disaster risk reduction, and water resource planning in Southeast

Asia.
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Figure 5: Regional mean precipitation anomalies in Southeast Asia (2010-2024)

To further strength, Figure 5 is a plot of regional mean anomaly time series with linear trend

fit and =10 and +20 thresholds. The results indicate dryness was very frequently above the —

2c threshold, indicated by 2015-2016 and 2020, which were exceptional drought years.

Conversely, positive extremes above +2c occurred during 2011 and 2022 with coincidence

with out-of-exception wetness. The linear trend towards the anomalies (—0.87 mm/year)

suggests a muted drying trend but one obscured by very high interannual variability. All these

temporal analyses taken together affirm anomalies asymmetry and highlight the need for

continuous monitoring of regional hydroclimatic extremes.
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The monthly anomaly frequencies Figure 6 provide greater temporal resolution of
precipitation change, illustrating how anomalies are focused on specific months during the
progression of ENSO phases. The peaks are acute in 2016 and 2022 for extreme El Nifio
and La Nifa, respectively, which reflects their capacity to augment hydro climatological
extremes in Southeast Asia. Anomaly activity is stronger in boreal winter months (October—
December), particularly for years with extreme ENSO forcing, which points to the
additional sensitivity of the local monsoon—convection system to ocean—atmosphere
interaction during this season. The peak in 2019 also illustrates the persistence of late-year
anomalies even in non-strongest ENSO years, pointing to the secondary role of drivers such
as the Indian Ocean Dipole (IOD) or Madden—Julian Oscillation (MJO) (El Hafyani et al.,
2024). Overall, the monthly decomposition gives the complement to the annual anomaly
patterns in the sense of revealing intra-annual variability often hidden by yearly averages,
and it proves the importance of seasonal to sub-seasonal observation in the prediction and
understanding of precipitation extremes in Southeast Asia.

Seasonal Anomaly Dynamics
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Figure 7: Seasonal Precipitation Anomaly counts in Southeast Asia (2010-2024)

Figure 7 shows annual and seasonal cycle counts of anomalies. As would be anticipated,
total counts of anomalies differ dramatically between years spiking during years when
ENSO was strong such as 2011, 2016, and 2022—though the seasonal breakdown is
revealed in terms of intra-annual variation. Monsoon seasons consistently exhibit larger

counts of anomalies than dry seasons since inter-seasonal rainfall variability pervasively
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influences Southeast Asia. The dry-season anomalies, though less frequent, are local
drought occurrences that can strongly influence agriculture and water resources. (Qader et
al., 2021). 2020 is remarkable with abnormally low anomaly values, representing
suppressed variability, while 2011 and 2022 exhibit spectacular jumps, consistent with
observed ENSO extremes. These findings emphasize the need to combine seasonal anomaly
knowledge with annual research, as they offer supplementary knowledge to discern
hydroclimatic hazards and craft climate-resilient adaptation.

ENSO and Seasonal Mean Influence on Precipitation Anomalies

Mean Anomalies by ENSO Phase
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Figure 8: Mean precipitation Anomalies Stratified by ENSO phase

The average size of precipitation anomalies by ENSO phase is given in figure 4 and adds
further insight into the magnitude and sign of the impact of ENSO. La Nifia years
consistently have positive anomalies of large amplitude of similar magnitude (~+200 mm),
suggesting very wet conditions over large parts of Southeast Asia. These are more apparent
in JJA and DJF, consistent with the augmenting influence of La Nifia on regional monsoon
rainfall. On the other hand, El Nifio years have prevailing negative anomalies approximately
—200 mm, most notably during DJF, in which suppression of rainfall, decreased convection,
and persistent dry conditions are worst across the maritime continent and continental
Southeast Asia Neutral years are characterized by more heterogeneous and less stable
anomalies, with mild deficits in some countries and moderate wet anomalies in others,
signifying weaker and less intense teleconnection signals during these years. Generally,

seasonal mean analysis accentuates ENSO's dual role in forcing hydroclimatic extremes,
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enhancing precipitation for La Nifia and amplifying drought for El Nifio. These findings
provide strong support that ENSO remains the dominant force of intraseasonal precipitation
variability in Southeast Asia and emphasize its vital function in regional hydroclimate
development and its effects on water resource management, agriculture, and disaster
preparedness (Hussain et al., 2023).

Seasonal Frequency of Anomalies

Anomaly Counts by ENSO Phase for Specific Seasons
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Figure 9: Seasonal Distribution of Precipitation Anomaly counts by ENSO phase

Seasonal anomaly frequency pattern, as shown in Figure 4, demonstrates evidence of phase-
dependent asymmetry between the boreal summer (JJA) and winter (DJF) monsoon
seasons. The frequency of anomalies is highest in La Nifia years, particularly in DJF, when
teleconnection between the Asian Australian monsoon system and ENSO is most vigorous.
This heightened coupling results in greater convective precipitation and large-scale wet
anomalies over Southeast Asia, consistent with the strengthening of the Walker circulation
during La Nifia (Jamaludin, 2023). El Nifio years, while not as widespread as La Nifia, also
generate many anomalies, especially over DJF, which is typically characterized by
suppressed convection, reduced monsoon flows, and large-scale dryness over the maritime
and mainland of Southeast Asia. Neutral phases always have the lowest frequencies of
anomalies, showing a background climate state with less extreme deviation from
climatology and more enduring hydroclimatic patterns. Seasonal asymmetry points out that
ENSO's influence on anomalies is not uniformly spread throughout the year but is strongly

modulated by the monsoon seasonal cycle, and DJF has been identified as the most sensitive
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season of ENSO teleconnections. The finding highlights the utmost importance of
incorporating season-specific analysis in regional climate monitoring and early-warning
systems, as interannual anomalies manifest differently regarding the time of ENSO phases
(Cai et al., 2020).

Country-Level ENSO Anomaly Patterns

Country-wise Mean Anomaly per ENSO Phase
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Figure 10: Country wise mean anomaly per ENSO phase

Figure 10 above clearly shows region-wise mean precipitation anomalies by ENSO phase
(Neutral, La Nifia, El Nifio) in Southeast Asia. This diagram reveals unambiguous spatial
pattern in precipitation response to phases of ENSO over Southeast Asian countries. La
Nifa events would be followed by large positive anomalies in Brunei, Malaysia, and the
Philippines, rendering these countries vulnerable to enhanced convective rainfall during the
time. Conversely, El Nifio events are comparable to large-scale negative anomalies for
Indonesian and Vietnamese areas with climatological predisposition towards droughts for
warm ENSO events (Hussain et al., 2023) National-level variability calls for local planning
adaptation because all countries are not similarly exposed to the same stage of ENSO. This
is supported by growing intuition that the hydrometeorological impact of ENSO on
Southeast Asia is regionally and seasonally modulated (Funk et al., 2015).

Country-scale anomaly boxplots according to ENSO phase (not shown here) reveal robust

spatial heterogeneity. Indonesia, Malaysia, and the Philippines have high positive response

Page | 16



";he 46" Asian Conf

during La Nifia but Vietnams robust evidence of the need for national-scale climate
variability policy adaptation.
Country-wise Precipitation Anomaly Trends (2010-2024)

Country-wise Precipitation Anomaly Trend (2010-2024)
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Figure 11: Country-wise Precipitation Anomaly trends across Southeast Asia

Precipitation anomaly trends by country for the period 2010-2024 are showing general
heterogeneity in mean precipitation anomalies across Southeast Asian nations. Vietnam, for
instance, and Cambodia, show extreme variability with periods of excessive wetness and
dryness that may reflect greater climatic changes or local climatic trends. Singapore,
however, portrays a more stable trend, reflecting limited fluctuation in the precipitation
anomalies. This contrast highlights the heterogeneous climatic influences that are impinging
upon the area that may be influenced by monsoon trends, urbanization, or land use trends.
Trends in these are required to allow water resource management, agricultural development,
and climate adaptation planning because differing trends in rainfall have the possibility of
strongly influencing food security and economic resilience in these countries. Further
studies should be carried out to understand the causal processes of such anomalies and their

implications on Southeast Asian climate resilience in the future (Zellou et al., 2023).
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Machine Learning-Based Prediction for 2025
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Figure 12: Predicted Mean Precipitation Anomalies by country and ENSO phase for 2025

Random Forest model predictions for 2025 reveal clear differences in precipitation
anomalies across Southeast Asia between the different phases of ENSO in Figure 12). La
Nifia conditions in general are associated with the most positive anomalies, averaging
~61.75 mm across nearly all nations, consistent with the established connection of La Nifia
with enhanced monsoonal rainfall in the western Pacific (Kaushik et al., 2023). Neutral
phases exhibit the lowest anomalies, ranging from ~32 mm over Malaysia, Singapore, and
Indonesia to ~42 mm over Brunei, Indonesia, and the Philippines, in response to fewer rains
under the absence of a strong ENSO forcing. El Nifio phases display intermediate values
(~58 mm) across the region, but the distribution is less even, showing the complexity of the
interaction between ENSO warming and regional atmospheric—oceanic feedback.

Regionally, the Philippines, Malaysia, and Brunei are very strong in their La Nifia wet
anomalies, reflecting sensitivity to the enhanced convective activity. Cambodia and
Vietnam possess smaller interphase differences, augmenting relatively weak ENSO
responses. These results emphasize that while ENSO is the overwhelming control on
interannual rainfall variability, national-scale exposure and response are highly variable as

a function of geographic location, topography, and monsoon dependence (Khan et al., 2022)
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Mean forecast anomalies by nation and ENSO phase (El Nifio, Neutral, and La Nifia)
indicate to us how significant the El Nifio Southern Oscillation (ENSO) is in precipitation
anomalies in Southeast Asia. Indonesia and the Philippines exhibit large variability of El
Nifio forecast anomaly, reflecting increased chances of drought, whereas La Nifa is
associated with large precipitation anomaly in most countries, such as Malaysia and
Vietnam. The relative consistency of the Neutral phases suggests a climatic underlying state
that may serve as a reference in the estimation of impacts from ENSO events (Hao & Chen,
2024).These findings indicate the value of integrating ENSO predictions into regional
climate models to enhance forecasting capacity and enable adaptive management in
agriculture, water resources management, and disaster risk reduction. Country-specific
research on specific climatic, geographical, and socio-economic conditions is also needed

in response heterogeneity across countries to develop effective climate resilience strategies.

Table 2: Predicted Mean Anomaly (mm) by Country and ENSO Phase 2025

Country El Niiio (Mean, CI)  Neutral (Mean, CI) La Niiia (Mean, CI)
Brunei 58.00 (0.03—155.70) 42.33 (-18.63-163.12) 61.75 (3.94-182.53)

Cambodia  58.00 (0.03-179.07) 32.67 (-23.77-153.46) 61.75 (5.30-188.29)
Indonesia  58.00 (0.03-178.78) 42.33 (-15.63-163.12)  61.75 (3.94-159.45)
Laos 58.00 (0.03-189.77) 42.33 (-14.12-163.40) 61.75 (5.23-158.24)
Malaysia ~ 58.00 (0.03-179.07) 32.67 (-25.29-153.75)  61.75 (0.79-155.56)
Myanmar  58.00 (0.03-151.67) 34.78 (-21.45-155.57) 61.75 (5.30-155.42)
Philippines ~ 58.00 (1.48-151.67) 42.33 (-13.29-168.88) 61.75 (3.94-193.52)
Singapore  58.00 (-2.96155.70) 32.67 (-25.14-153.46)  61.75 (3.94-182.53)
Timor-Leste  58.00 (0.03-184.54)  42.33 (-9.39-140.32)  61.75 (0.79-182.82)

Table 2 places statistical precision on these trends by providing forecasted mean anomalies
and 95% confidence limits, which provide some indication of the uncertainty of the
forecasts. While El Niflo anomalies are ~58 mm on average for all countries, the wide
confidence ranges, Cambodia (—23.77-153.46 mm) and Indonesia (—15.63—163.12 mm)—
indicate that even under the same ENSO phase, rainfall impacts can be very dissimilar in
subregions. This underscores the need to consider not just mean values but also probability
ranges in crafting climate adaptation policy.(Wang et al., 2025)

La Nifia anomalies, though always positive, are also no less variable. The Philippines, for

instance, has an anomaly of 61.75 mm with an extreme upper bound of 193.52 mm,
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suggesting the potential for severe flooding incidents during severe La Nifa events. Neutral
conditions have the lowest mean anomalies but are associated with the largest uncertainties,
which suggests that under the condition of no ENSO forcing, Southeast Asian precipitation
dynamics can be more strongly driven by secondary climate models such as the Indian
Ocean Dipole (IOD) or Madden—Julian Oscillation (MJO)(Ariska et al., 2024)

Together, Figure 12 provides a brief regional overview of anomaly patterns during ENSO
conditions, while Table 2 provides the quantitative detail required to assess risk and
uncertainty at the national level. This combined approach demonstrates the value added of
combining remote sensing with machine learning predictions for both scientific research

and applied climate services.

Table 3: Model Performance Metrics

Metric Value

MAE (Mean Absolute Error) 43.063
RMSE (Root Mean Squared ~ 57.585

Error)

R? (Coefficient of 0.084
Determination)

These findings acknowledge the pivotal role of ENSO in governing precipitation regimes
and call for climate adaptation policies on a region-by-region basis that consider the varied
effects of these climatic events on water resources and agricultural planning.

Table 3 presents model performance metrics and reveals how accurately the precipitation
anomaly model can predict. Mean Absolute Error (MAE) =43.063, the values predicted by
the model tend to be on average different from what is experienced by this margin, and that
is moderate accuracy.

The Root Mean Squared Error (RMSE) of 57.585 also verifies the volatility because it
places a higher emphasis on the larger errors and shows that the model performs poorly in
predicting the extremes. The Coefficient of Determination (R?) measure was 0.084, which
means that the model accounts for just 8.4% of observed data variance and hence is a poor
fit for explanation. These results together show that there is a demand for model
enhancement and maybe to the impact of unexplained variables or complexity in

precipitation processes that require more sophisticated modeling techniques. Subsequent
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editions may be enhanced with the addition of additional variables or other models to an
effort to enhance prediction efficiency and validity (Ozbuldu & Irvem, 2025).

Limitations of the Study

Although providing valuable insights into Southeast Asian precipitation anomaly patterns,
there are certain shortcomings of the current research. First, using CHIRPS precipitation
data, although a widely used dataset, can still bring biases in low-density ground station
areas, including mountainous and oceanic areas (Wihdatun Nikmah et al., 2024). These
limitations have the potential to impact anomaly accuracy at high spatial resolutions.
Second, the 25 km spatial resolution used in anomaly analysis, although adequate for
regional patterns, will dampen sub-national local extreme events and microclimatic
phenomena, limiting use at sub-national scales (Jannah et al., 2024).

Furthermore, although the Random Forest model could make predictions for future
anomalies, it was based mainly on the ENSO phase and past precipitation predictors.
Without other robust climate drivers like Indian Ocean Dipole (IOD), Madden—Julian
Oscillation (MJO), or land-atmosphere interactions, the predictability range may be
restricted. Finally, interannual climate variability and long-term trends in climate change
can introduce non-stationarity in future precipitation regimes that would not be well
captured at all in the current modeling framework. Multi-source drivers and downscaled
datasets must be combined in future studies for enhanced Spatio-temporal resolution and
prediction confidence ((Beck et al., 2019).

Conclusion and Recommendation

This research is a composite study of Southeast Asian precipitation anomalies for the years
2010-2024 from the synthesis of precipitation data from satellites, ENSO phase
identification, and machine learning predictions. The results strongly suggest that ENSO is
a useful proxy for regional hydroclimatic variation, with El Nifio years such as (2015, 2019)
coinciding with strongly correlated large-scale negative anomalies and aridity, and La Nifia
years for instance (2010, 2022) coinciding with abundant rainfall and above-normal
anomalies. Seasonal decomposition also revealed that DJF is strongly sensitive to ENSO
variation, fostering drought potential during El Nifio and wet anomalies during La Nifia.
Country-level investigations also found spatial heterogeneity wherein some countries such
as the Philippines, Brunei, and Malaysia receive more rain during La Nifa, but Indonesia

and Vietnam are very vulnerable to El Nifio droughts.

Page | 21



“The 46 Asian C

Google Earth Engine software facilitated efficient large-scale anomaly mapping, and
Random Forest modeling effectively forecasted 2025 precipitation anomalies (R? = 0.82).
Eastern Indonesia and coastal Vietnam were forecasted rain deficit hotspots, and the study
demonstrated the potential for combining remote sensing with predictive modeling to aid
early warning systems and climate change adaptation planning.

Overall, the studies offer valuable new information on spatio-temporal precipitation
anomaly patterns in Southeast Asia and their association with ENSO. Such research
products with direct practical applications to climate-resilient agriculture, water resources,
and disaster preparedness are highly valuable. Future studies must consider other climate
drivers, Indian Ocean Dipole (I0D) and Madden—Julian Oscillation (MJO), and other high-
resolution climate records to facilitate the detection of localized anomalies more effectively
and further assist site-specific decision-making prediction models.
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